
Post-quantum cryptography

Tanja Lange

02 October 2015

Academy Contact Forum “Coding Theory and Cryptography VI”



In the long term, all encryption needs to be post-quantum

I Mark Ketchen, IBM Research, 2012, on quantum computing:
“Were actually doing things that are making us think like,
‘hey this isn’t 50 years off, this is maybe just 10 years off, or
15 years off.’ It’s within reach.”

I Fast-forward to 2022, or 2027. Quantum computers exist.
I Shor’s algorithm solves in polynomial time:

I Integer factorization.
I The discrete-logarithm problem in finite fields.
I The discrete-logarithm problem on elliptic curves.

I This breaks all current public-key encryption on the Internet!

I Also, Grover’s algorithm speeds up brute-force searches.

I Example: Only 264 quantum operations to break AES-128.

I Need to switch the Internet to post-quantum encryption.
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Confidence-inspiring crypto takes time to build

I Many stages of research from cryptographic design to
deployment:

I Explore space of cryptosystems.
I Study algorithms for the attackers.
I Focus on secure cryptosystems.

I Study algorithms for the users.
I Study implementations on real hardware.
I Study side-channel attacks, fault attacks, etc.
I Focus on secure, reliable implementations.
I Focus on implementations meeting performance requirements.
I Integrate securely into real-world applications.

I Example: ECC introduced 1985; big advantages over RSA.
Robust ECC is starting to take over the Internet in 2015.

I Post-quantum research can’t wait for quantum computers!
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Even higher urgency for long-term confidentiality

I Today’s encrypted communication is being stored by attackers
and will be decrypted years later with quantum computers.
Danger for human-rights workers, medical records, journalists,
security research, legal proceedings, state secrets, . . .
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Post-Quantum Cryptography for Long-term Security

I Project funded by EU in Horizon 2020.

I Starting date 1 March 2015, runs for 3 years.

I 11 partners from academia and industry, TU/e is coordinator
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Impact of PQCRYPTO

I All currently used public-key systems on the Internet are
broken by quantum computers.

I Today’s encrypted communication can be (and is being!)
stored by attackers and can be decrypted later with quantum
computer.

I Post-quantum secure cryptosystems exist but are
under-researched – we can recommend secure systems now,
but they are big and slow

hence the logo.
I PQCRYPTO will design a portfolio of high-security

post-quantum public-key systems, and will improve the speed
of these systems, adapting to the different performance
challenges of mobile devices, the cloud, and the Internet.

I PQCRYPTO will provide efficient implementations of
high-security post-quantum cryptography for a broad
spectrum of real-world applications.
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Work packages

Technical work packages

I WP1: Post-quantum cryptography for small devices
Leader: Tim Güneysu, co-leader: Peter Schwabe

I WP2: Post-quantum cryptography for the Internet
Leader: Daniel J. Bernstein, co-leader: Bart Preneel

I WP3: Post-quantum cryptography for the cloud
Leader: Nicolas Sendrier, co-leader: Lars Knudsen

Non-technical work packages

I WP4: Management and dissemination
Leader: Tanja Lange

I WP5: Standardization
Leader: Walter Fumy

Tanja Lange http://pqcrypto.eu.org Post-quantum cryptography 8

http://pqcrypto.eu.org


WP1: Post-quantum cryptography for small devices

I Find post-quantum secure cryptosystems suitable for small
devices in power and memory requirements (e.g. smart cards
with 8-bit or 16-bit or 32-bit architectures, with different
amounts of RAM, with or without coprocessors).

I Develop efficient implementations of these systems.

I Investigate and improve their security against implementation
attacks.

I Deliverables include reference implementations and optimized
implementations for software for platforms ranging from small
8-bit microcontrollers to more powerful 32-bit ARM
processors.

I Deliverables also include FPGA and ASIC designs and physical
security analysis.

Tanja Lange http://pqcrypto.eu.org Post-quantum cryptography 9

http://pqcrypto.eu.org


WP2: Post-quantum cryptography for the Internet

I Find post-quantum secure cryptosystems suitable for busy
Internet servers handling many clients simultaneously.

I Develop secure and efficient implementations.

I Integrate these systems into Internet protocols.

I Deliverables include software library for all common Internet
platforms, including large server CPUs, smaller desktop and
laptop CPUs, netbook CPUs (Atom, Bobcat, etc.), and
smartphone CPUs (ARM).

I Aim is to get high-security post-quantum crypto ready for the
Internet.
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WP3: Post-quantum cryptography for the cloud

I Provide 50 years of protection for files that users store in the
cloud, even if the cloud service providers are not trustworthy.

I Allow sharing and editing of cloud data under user-specified
security policies.

I Support advanced cloud applications such as
privacy-preserving keyword search.

I Work includes public-key and symmetric-key cryptography.

I Prioritize high security and speed over key size.
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What does PQCRYPTO mean for you?

I Expert recommendations for post-quantum secure
cryptosystems.

I Recommended systems will get faster/smaller as result of
PQCRYPTO research.

I More benchmarking to compare cryptosystems.

I Cryptographic libraries will be made freely available for several
computer architectures.

I Workshop and “summer” school on post-quantum
cryptography (Spring or summer 2017)

I Find more information online at http://pqcrypto.eu.org/.

I Follow us on twitter https://twitter.com/pqc_eu.
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State of the art in post-quantum encryption

I Code-based encryption: e.g., 1978 McEliece.
I Attacker tries to correct errors for a “random-looking” code.
I Which codes should users take? Start from Reed–Solomon;

add scaling? permutation? puncturing? subcodes? subfields?
wildness? list decoding? increased genus? Or start from
LDPC? MDPC? QC-MDPC? QD-MDPC? Rank metric? . . .

I Some papers studying algorithms for attackers:
1962 Prange; 1981 Omura; 1988 Lee–Brickell; 1988 Leon; 1989 Krouk; 1989 Stern; 1989 Dumer;
1990 Coffey–Goodman; 1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993
Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994 Canteaut–Chabanne; 1998
Canteaut–Chabaud; 1998 Canteaut–Sendrier; 2008 Bernstein–Lange–Peters; 2009
Bernstein–Lange–Peters–van Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010
Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2011 Becker–Coron–Joux; 2012
Becker–Joux–May–Meurer; 2013 Bernstein–Jeffery–Lange–Meurer (post-quantum); 2015
May–Ozerov.

I We have confidence in scaled-up McEliece, but keys are huge.
I QC-MDPC: much smaller keys, but is it secure?
I Side-channel protection? Higher-level protocols? . . .

I Lattice-based encryption: even more complex.
I Multivariate-quadratic encryption.
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Linear Codes (following slides from Tung Chou)

A binary linear code C of length n and dimension k is a
k-dimensional subspace of IFn

2 .

C is usually specified as

I the row space of a generating matrix G ∈ IFk×n
2

C = {mG|m ∈ IFk
2}

I the kernel space of a parity-check matrix H ∈ IF
(n−k)×n
2

C = {c|Hcᵀ = 0, c ∈ IFn
2}

Example:

G =

1 0 1 0 1
1 1 0 0 0
1 1 1 1 0


c = (111)G = (10011) is a codeword.
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Weight, distance, decoding problem

I The Hamming weight of a word is the number of nonzero
coordinates.

I The Hamming distance between two words in IFn
2 is the

number of coordinates where they differ.

Decoding problem: find the closest codeword c ∈ C to a given
r ∈ IFn

2 , assuming that there is a unique closest codeword. Let
r = c + e. Note that finding e is an equivalent problem.

I e is called the error vector.

I If c is t errors away from r, i.e., the Hamming weight of e is t,
this is called a t-error correcting problem.

I There are lots of code families with fast decoding algorithms,
e.g., Reed–Solomon codes, Goppa codes/alternant codes, etc.

I However, the general decoding problem is hard:
Information-set decoding takes exponential time.
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Binary Goppa code

A binary Goppa code is often defined by

I a list L = (a1, . . . , an) of n distinct elements in IFq, called the
support.

I a square-free polynomial g(x) ∈ IFq[x] of degree t such that
g(a) 6= 0 for all a ∈ L. g(x) is called the Goppa polynomial.

Then the corresponding binary Goppa code, denoted as Γ(L, g), is
the set of words c = (c1, . . . , cn) ∈ IFn

2 that satisfy

c1
x− a1

+
c2

x− a2
+ · · ·+ cn

x− an
≡ 0 (mod g(x))

I can correct t errors

I used in code-based cryptography
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The Niederreiter cryptosystem

Developed in 1986 by Harald Niederreiter as a variant of the
McEliece cryptosystem.

I Public Key: a parity-check matrix K ∈ IF
(n−k)×n
q for the

binary Goppa code
I Encryption: The plaintext m is an n-bit vector of weight t.

The ciphertext c is an (n− k)-bit vector:

cᵀ = Kmᵀ.

I Decryption: Find a n-bit vector r such that

cᵀ = Krᵀ,

then use any available decoder to decode r. Can just let r be
the ciphertext followed by k zeros, so decryption is basically
decoding.

I The passive attacker is facing a t-error correcting problem for
the public key, which seems to be random.
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McBits

Daniel J. Bernstein, Tung Chou, Peter Schwabe, CHES 2013.

I Encryption is super fast anyways (just a vector-matrix
multiplication).

I Main step in decryption is decoding of Goppa code. The
McBits software achieves this in constant time.

I Decoding speed at 2128 pre-quantum security:
(n; t) = (4096; 41) uses 60493 Ivy Bridge cycles.

I Decoding speed at 2263 pre-quantum security:
(n; t) = (6960; 119) uses 306102 Ivy Bridge cycles.

I Grover speedup is less than halving the security level, so the
latter parameters offer at least 2128 post-quantum security.
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SPHINCS: practical stateless hash-based
signatures

Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing,
Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou,

Peter Schwabe, Zooko Wilcox-O’Hearn
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Hash-based signatures

I 1979 Lamport one-time signature scheme.

I Fix a k-bit one-way function G : {0, 1}k → {0, 1}k and hash
function H : {0, 1}∗ → {0, 1}k.

I Signer’s secret key X: 2k strings x1[0], x1[1], . . . , xk[0], xk[1],
each k bits. Total: 2k2 bits.

I Signer’s public key Y : 2k strings y1[0], y1[1], . . . , yk[0], yk[1],
each k bits, computed as yi[b] = G(xi[b]). Total: 2k2 bits.

I Signature S(X, r,m) of a message m:
r, x1[h1], . . . , xk[hk] where H(r,m) = (h1, . . . , hk).

I Must never use secret key more than once.

I Usually choose G = H (restricted to k bits).

I 1979 Merkle extends to more signatures.
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8-time Merkle hash tree
Eight Lamport one-time keys Y1, Y2, . . . , Y8 with corresponding
X1, X2, . . . , X8, where Xi = (xi,1[0], xi,1[1], . . . , xi,k[0], xi,k[1])
and Yi = (yi,1[0], yi,1[1], . . . , yi,k[0], yi,k[1]).

X1

��

X2

��

X3

��

X4

��

X5

��

X6

��

X7

��

X8

��
Y1

��

Y2

��

Y3

��

Y4

��

Y5

��

Y6

��

Y7

��

Y8

��
Y9 = H(Y1, Y2)

$$

Y10 = H(Y3, Y4)

zz

Y11 = H(Y5, Y6)

$$

Y12 = H(Y7, Y8)

zz
Y13 = H(Y9, Y10)

**

Y14 = H(Y11, Y12)

tt
Y15 = H(Y13, Y14)

The Merkle public key is Y15.
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Signature in 8-time Merkle hash tree

First message has signature is (S(X1, r,m), Y1, Y2, Y10, Y14).

X1

��

X2

��

X3

��

X4

��

X5

��

X6

��

X7

��

X8

��
Y1

��

Y2

��

Y3
��

Y4
��

Y5

��

Y6

��

Y7

��

Y8

��
Y9 = H(Y1, Y2)

$$

Y10 = H(Y3, Y4)

zz

Y11 = H(Y5, Y6)

$$

Y12 = H(Y7, Y8)

zz

Y13 = H(Y9, Y10)

**

Y14 = H(Y11, Y12)

tt

Y15 = H(Y13, Y14)

Verify by checking signature S(X1, r,m) on m against Y1. Link Y1
against public key Y15 by computing Y ′9 = H(Y1, Y2),
Y ′13 = H(Y ′9 , Y10), and comparing H(Y ′13, Y14) with Y15.
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Pros and cons
Pros:

I Post quantum

I Only need secure hash
function

I Small public key

I Security well understood

I Fast

I Proposed for standards http://tools.ietf.org/html/

draft-housley-cms-mts-hash-sig-01

Cons:

I Biggish signature and secret key

I Stateful
Adam Langley “for most environments it’s a huge
foot-cannon.”
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Huge trees (1987 Goldreich), keys on demand (Levin)

Signer chooses random r ∈
{

2255, 2255 + 1, . . . , 2256 − 1
}

,
uses one-time public key Tr to sign message;
uses one-time public key Ti to sign (T2i, T2i+1) for i < 2255.
Generates ith secret key as Hk(i) where k is master secret.

T1

yy %%
T2

}} ��
T3

�� !!
. .
.

~~

. . . . .
. . . .

""
T2254

�� ""

...

��

T2255−1

{{ ##
T2255 T2255+1 · · · Tr

��

· · · T2256−2 T2256−1

m
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It works, but signatures are painfully long

0.6 MB for hash-based Goldreich signature using
short-public-key Winternitz-16 one-time signatures.

Would dominate traffic in typical applications,
and add user-visible latency on typical network connections.

Example:
Debian operating system is designed for frequent upgrades.
At least one new signature for each upgrade.
Typical upgrade: one package or just a few packages.
1.2 MB average package size.
0.08 MB median package size.

Example:
HTTPS typically sends multiple signatures per page.
1.8 MB average web page in Alexa Top 1000000.
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New: SPHINCS-256

Reasonable sizes.
0.041 MB signature.
0.001 MB public key.
0.001 MB private key.

Reasonable speeds.
Benchmarks of our public-domain software on Haswell:
51.1 million cycles to sign. (RSA-3072: 14.2 million.)

1.5 million cycles to verify. (RSA-3072: 0.1 million.)
3.2 million cycles for keygen. (RSA-3072: 950 million.)

Designed for 2128 post-quantum security,
even for a user signing more than 250 messages:
220 messages/second continuously for more than 30 years.
Yes, we did the analysis of quantum attacks.
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Ingredients of SPHINCS (and SPHINCS-256)

Drastically reduce tree height (to 60).

Replace one-time leaves with few-time leaves.

Optimize few-time signature size plus key size.
New few-time HORST, improving upon HORS.

Use hyper-trees (12 layers), as in GMSS.

Use masks, as in XMSS and XMSSMT,
for standard-model security proofs.

Optimize short-input (256-bit) hashing speed.
Use sponge hash (with ChaCha12 permutation).

Use fast stream cipher (again ChaCha12).

Vectorize hash software and cipher software.

See paper for details: sphincs.cr.yp.to
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Initial recommendations
I Symmetric encryption Thoroughly analyzed, 256-bit keys:

I AES-256
I Salsa20 with a 256-bit key

Evaluating: Serpent-256, . . .

I Symmetric authentication Information-theoretic MACs:
I GCM using a 96-bit nonce and a 128-bit authenticator
I Poly1305

I Public-key encryption McEliece with binary Goppa codes:
I length n = 6960, dimension k = 5413, t = 119 errors

Evaluating: QC-MDPC, Stehlé-Steinfeld NTRU, . . .

I Public-key signatures Hash-based (minimal assumptions):
I XMSS with any of the parameters specified in CFRG draft
I SPHINCS-256

Evaluating: HFEv-, . . .
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