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Motivation for LWE
1981 A basic concept of a quantum computer

by Feynman
1994 Shor’s algorithm

I Factorization and DLP are easy
I Broken: RSA, Diffie-Hellman, ECDLP etc.

1995 First quantum logic gate by Monroe, Meekhof,
King, Itano and Wineland
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Motivation for LWE

2016 CNSA Suite and Quantum Computing FAQ by
NSA
“Many experts predict a quantum computer capable of
effectively breaking public key cryptography within a
few decades, and therefore NSA believes it is important
to address that concern.”

NIST report on post-quantum crypto

“We must begin now to prepare our information secu-
rity systems to be able to resist quantum computing.”
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Learning With Errors (LWE)

The LWE problem (Regev, ‘05): solve a linear system with noise
b1
b2
...

bm

 =


a11 a12 . . . a1,n
a21 a22 . . . a2,n

...
...

. . .
...

am1 am2 . . . am,n

 ·


s1
s2
...

sn

+


e1
e2
...

em


over a finite field Fq for a secret (s1, s2, . . . , sn) ∈ Fn

q where

I a modulus q = poly(n)

I the aij ∈ Fq are chosen uniformly randomly,
I an adversary can ask for new equations (m > n).
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Learning With Errors (LWE)
The LWE problem is easy when ∀ei = 0.

b1
b2
...

bm

 =


a11 a12 . . . a1,n
a21 a22 . . . a2,n

...
...

. . .
...

am1 am2 . . . am,n

 ·


s1
s2
...

sn


Gaussian elimination solves the problem.

Otherwise, LWE might be hard.
b1
b2
...

bm

 =


a11 a12 . . . a1,n
a21 a22 . . . a2,n

...
...

. . .
...

am1 am2 . . . am,n

 ·


s1
s2
...

sn

+


e1
e2
...

em


Gaussian elimination amplifies errors.
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Learning With Errors (LWE)
The errors ei are sampled independently from a Gaussian with
standard deviation σ &

√
n:

0
√

n−
√

n
Fp

When viewed jointly, the error vectore1
...

em


is sampled from a spherical Gaussian.
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Learning With Errors (LWE)

LWE is tightly related to classical lattice problems.
I Bounding Distance Decoding (BDD)

Rm

b ≡ A · s + e

Given b, find a closest point of the q-ary lattice

{w ∈ Zm | ∃s ∈ Zn : w ≡ A · s mod q}
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Learning With Errors (LWE)
LWE is tightly related to classical lattice problems.

I Shortest Vector Problem (SVP)

Rm

Given a basis, find a shortest non-zero vector of the lattice.

I LWE is at least as hard as worst-case SVP-type problems
(Regev‘05, Peikert‘09).

I Not known to be broken by quantum computers.
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Learning With Errors (LWE)

Known attacks for q = poly(n):

Time Samples

Trial and error 2O(n log n) O(n)

Blum, Kalai, Wasserman ‘03 2O(n) 2O(n)

Arora, Ge ‘11 2O(σ2 log n) 2O(σ2 log n)

Idea: if all errors (almost) certainly lie in {−T , . . . ,T}, then

T∏
i=−T

(a1s1 + a2s2 + · · ·+ ansn − b + i) = 0.

View as linear system of equations in ≈ n2T monomials.
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Learning With Errors (LWE)
Application: public-key encryption of a bit (Regev’05).

I Private key: s ∈ Fn
q.

I Public key pair: (A,b = A · s + e).

I Encrypt: pick random row vector rT ∈ {0,1}m ⊂ Fm
q .

Output the pair

cT := rT ·A and d :=

{
rT · b if the bit is 0,
rT · b + bq/2c if the bit is 1.

I Decryption of pair cT ,d: compute

d−cT ·s = d−rT ·A·s = d−rT b−rT e ≈
{

0 if bit was 0,
bq/2c if bit was 1.↑

small enough
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Learning With Errors (LWE)
I Features:

I Hardness reduction from classical lattice problems
I Linear operations

I simple and efficient implementation
I highly parallelizable

I Source of exciting applications
I FHE, attribute-based encryption for arbitrary access policies,

general-purpose code obfuscation

I Drawback: key size.
I To hide the secret one needs an entire linear system:

b1
b2
...

bm

 =


a11 a12 . . . a1,n
a21 a22 . . . a2,n
...

...
. . .

...
am1 am2 . . . am,n

 ·


s1
s2
...

sn

+


e1
e2
...

en


↑ ↑ ↑

m log p mn log p n log p
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Ring-based LWE
I Identify vector space

Fn
q with Rq = Z[x ]/(q, f (x))

for some irreducible monic f (x) ∈ Z[x ] s.t. deg f = n,
by viewing

(s1, s2, . . . , sn) as s1 + s2x + · · ·+ snxn−1.

I Use samples of the form
b1
b2
...

bn

 = Aa·


s1
s2
...

sn

+


e1
e2
...

en


with Aa the matrix of
multiplication by some random
a(x) = a1 + a2x + · · ·+ anxn−1.

I Store a(x) rather than Aa: saves factor n.
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Ring-based LWE

Example:
I if f (x) = xn + 1, then Aa is the anti-circulant matrix

a1 −an . . . −a3 −a2
a2 a1 . . . −a4 −a3
a3 a2 . . . −a5 −a4
...

...
. . .

...
...

an an−1 . . . a2 a1


of which it suffices to store the first column.
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Ring-based LWE
Direct ring-based analogue of LWE-sample would read

b1
b2
...

bn

 = Aa ·


s1
s2
...

sn

+


e1
e2
...

en


with the ei sampled independently from

N (0, σ)

for some fixed small σ = σ(n).

This is not Ring-LWE!
I Not backed up by hardness statement.
I Sometimes called Poly-LWE.
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Ring-LWE

So what is Ring-LWE according to [LPR10]? Samples look like
b1
b2
...

bn

 = Aa ·


s1
s2
...

sn

+ Af ′(x) · B−1·


e1
e2
...

en



where
I B is the canonical embedding matrix.
I Af ′(x) compensates for the fact that one actually picks

secrets from the dual.
Hardness reduction from ideal lattice problems.
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Ring-LWE

Note:
I factor Af ′(x) · B−1 might skew the error distribution,

Af ′(x) · B−1

I but also scales it!
I det Af ′(x) = ∆ with

∆ = |disc f (x)| , ← could be huge

I det B−1 = 1/
√

∆.

So “on average”, each ei is scaled up by
√

∆
1/n

. . .
I . . . but remember: skewness.
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Scaled Canonical Gaussian ring-based LWE

Af ′(x) is changed to a scalar λ
b1
b2
...

bn

 = Aa ·


s1
s2
...

sn

+ λ · B−1 ·


e1
e2
...

en

 .

The natural choice is λ = |∆|1/n.
I So det Aλ = |∆|.

SCG-LWE = Ring-LWE for 2m-cyclotomic fields:
I f ′(x) = 2m−1x2m−1−1,
I λ = 2m−1,
I So Af ′(x) = M · Aλ for some matrix M ∈ GLn(Z).
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Main result

For SCG ring-based LWE with parameters:
I n = 2` for some ` ∈ N,
I a modulus q = poly(n),
I an error distribution with σ = poly(n),
I an underlying field K = Q(

√
p1,
√

p2, . . . ,
√

p`),
I a square-free m =

∏
pi ≥ (2σ

√
n log n)2/ε for some ε > 0,

I ∀i : pi ≡ 1 mod 4, so ∆K = mn/2,
I a scaling parameter λ′ = λ/|∆K |ε/n

there exist an attack with

Time: poly(n · log(q)) Space: O(n) samples

λ′ = λ/|∆K |1/2n appears in ELOS‘15, CLS‘15, CLS‘16.
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Main result

Tensor structure:
I K = K1 ⊗Q K2 ⊗Q · · · ⊗Q K`,

I where Ki = Q(
√

pi )

I The ring of integers R = R1 ⊗Z R2 ⊗Z · · · ⊗Z R`,
I where Ri = Z[(1 +

√
pi )/2]

I The dual R∨ = 1√
m R = R∨1 ⊗Z R∨2 ⊗Z · · · ⊗Z R∨`

So λ · B−1 is a Kronecker product of corresponding matrices in
underlying quadratic fields Ki(

−1+
√

pi
2

1+
√

pi
2

1 −1

)
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Main result

Note (
0 1

)
·

(
−1+

√
pi

2
1+
√

pi
2

1 −1

)
=
(
1 −1

)
and through the Kronecker product(

0 0 . . . 1
)
· λ · B−1 = d ∈ {1,−1}n

Applying to an error term of

b = Aa · s + λ′ · B−1 · e

we have
|∆K |−ε/n · d ·

(
e1 e2 . . . en

)T
= ω.
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Main result
ω is distributed by Gaussian with the standard deviation

√
n · σ

|∆K |ε/n =

√
n · σ√
mε ≤

1
2
√

log n
.

Asymptotically P
(
|ω| < 1

2

)
→ 1 as n→∞.

So a SCG-LWE sample

n exact equations reveal the secret vector s.
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Conclusion

I No threat to the security proof of Ring-LWE.
The standard deviation is far less than needed.

σ′ =
σ

|∆|ε/n ≤
1

2
√

n log n
.

I SCG-LWE can simplify Ring-LWE.
I Keep a scalar λ instead of Af ′(x).

I Inaccurate choice of a scalar leads to attacks.
I ELOS‘15, CLS‘15, CLS‘16,
I unified overview in Peikert‘16.

I Hardness proof for proper scalars?

Thank you for your attention!
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