On error distributions in ring-based LWE

Wouter Castryck^{1,2}, Ilia Iliashenko¹, Frederik Vercauteren^{1,3}

¹ COSIC, KU Leuven

² Ghent University

³ Open Security Research

Motivation for LWE

- 1981 A basic concept of a quantum computer by Feynman
- 1994 Shor's algorithm
 - Factorization and DLP are easy
 - Broken: RSA, Diffie-Hellman, ECDLP etc.

Motivation for LWE

- 1981 A basic concept of a quantum computer by Feynman
- 1994 Shor's algorithm
 - Factorization and DLP are easy
 - Broken: RSA, Diffie-Hellman, ECDLP etc.
- 1995 First quantum logic gate by Monroe, Meekhof, King, Itano and Wineland

Motivation for LWE

2016 CNSA Suite and Quantum Computing FAQ by NSA

"Many experts predict a quantum computer capable of effectively breaking public key cryptography within a few decades, and therefore NSA believes it is important to address that concern."

NIST report on post-quantum crypto

"We must begin now to prepare our information security systems to be able to resist quantum computing."

The LWE problem (Regev, '05): solve a linear system with noise

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1,n} \\ a_{21} & a_{22} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_m \end{pmatrix}$$

over a finite field \mathbb{F}_q for a secret $(s_1, s_2, \dots, s_n) \in \mathbb{F}_q^n$ where

- a modulus q = poly(n)
- the $a_{ij} \in \mathbb{F}_q$ are chosen uniformly randomly,
- an adversary can ask for new equations (m > n).

The LWE problem is easy when $\forall e_i = 0$.

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1,n} \\ a_{21} & a_{22} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$

Gaussian elimination solves the problem.

The LWE problem is easy when $\forall e_i = 0$.

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1,n} \\ a_{21} & a_{22} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$

Gaussian elimination solves the problem. Otherwise, LWE might be <u>hard</u>.

Gaussian elimination amplifies errors.

The errors e_i are sampled independently from a Gaussian with standard deviation $\sigma \gtrsim \sqrt{n}$:

When viewed jointly, the error vector

$$\begin{pmatrix} e_1 \\ \vdots \\ e_m \end{pmatrix}$$

is sampled from a spherical Gaussian.

LWE is tightly related to classical lattice problems.

Bounding Distance Decoding (BDD)

Given **b**, find a <u>closest</u> point of the *q*-ary lattice

 $\{\mathbf{w} \in \mathbb{Z}^m \mid \exists \mathbf{s} \in \mathbb{Z}^n : \mathbf{w} \equiv \mathbf{A} \cdot \mathbf{s} \mod q\}$

LWE is tightly related to classical lattice problems.

Shortest Vector Problem (SVP)

Given a basis, find a shortest non-zero vector of the lattice.

LWE is tightly related to classical lattice problems.

Shortest Vector Problem (SVP)

Given a basis, find a shortest non-zero vector of the lattice.

- LWE is at least as hard as <u>worst-case</u> SVP-type problems (Regev'05, Peikert'09).
- Not known to be broken by quantum computers.

Known attacks for q = poly(n):

	Time	Samples
Trial and error	$2^{O(n \log n)}$	O(n)
Blum, Kalai, Wasserman '03	2 ^{<i>O</i>(<i>n</i>)}	2 ^{<i>O</i>(<i>n</i>)}
Arora, Ge '11	$2^{O(\sigma^2 \log n)}$	$2^{O(\sigma^2 \log n)}$

Known attacks for q = poly(n):

	Time	Samples
Trial and error	$2^{O(n \log n)}$	O(n)
Blum, Kalai, Wasserman '03	2 ^{<i>O</i>(<i>n</i>)}	2 ^{<i>O</i>(<i>n</i>)}
Arora, Ge '11	$2^{O(\sigma^2 \log n)}$	$2^{O(\sigma^2 \log n)}$

<u>Idea</u>: if all errors (almost) certainly lie in $\{-T, \ldots, T\}$, then

$$\prod_{i=-T}^{T} (a_1 s_1 + a_2 s_2 + \cdots + a_n s_n - b + i) = 0.$$

View as linear system of equations in $\approx n^{2T}$ monomials.

Known attacks for q = poly(n):

	Time	Samples
Trial and error	$2^{O(n \log n)}$	O(n)
Blum, Kalai, Wasserman '03	2 ^{<i>O</i>(<i>n</i>)}	2 ^{<i>O</i>(<i>n</i>)}
Arora, Ge '11	$2^{O(\sigma^2 \log n)}$	$\underline{2^{O(\sigma^2 \log n)}}$

<u>Idea</u>: if all errors (almost) certainly lie in $\{-T, \ldots, T\}$, then

$$\prod_{i=-T}^{T} (a_1 s_1 + a_2 s_2 + \cdots + a_n s_n - b + i) = 0.$$

View as linear system of equations in $\approx n^{2T}$ monomials.

Application: public-key encryption of a bit (Regev'05).

- Private key: $\mathbf{s} \in \mathbb{F}_q^n$.
- Public key pair: $(\mathbf{A}, \mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e})$.

Application: public-key encryption of a bit (Regev'05).

- Private key: $\mathbf{s} \in \mathbb{F}_q^n$.
- Public key pair: $(\mathbf{A}, \mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e})$.

• Encrypt: pick random row vector $\mathbf{r}^T \in \{0, 1\}^m \subset \mathbb{F}_q^m$. Output the pair

$$\mathbf{c}^{\mathcal{T}} := \mathbf{r}^{\mathcal{T}} \cdot \mathbf{A}$$
 and $\mathbf{d} := \begin{cases} \mathbf{r}^{\mathcal{T}} \cdot \mathbf{b} & \text{if the bit is 0,} \\ \mathbf{r}^{\mathcal{T}} \cdot \mathbf{b} + \lfloor q/2 \rfloor & \text{if the bit is 1.} \end{cases}$

Application: public-key encryption of a bit (Regev'05).

- Private key: $\mathbf{s} \in \mathbb{F}_q^n$.
- Public key pair: $(\mathbf{A}, \mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e})$.
- Encrypt: pick random row vector $\mathbf{r}^T \in \{0, 1\}^m \subset \mathbb{F}_q^m$. Output the pair

$$\mathbf{c}^{\mathcal{T}} := \mathbf{r}^{\mathcal{T}} \cdot \mathbf{A}$$
 and $\mathbf{d} := \begin{cases} \mathbf{r}^{\mathcal{T}} \cdot \mathbf{b} & \text{if the bit is 0,} \\ \mathbf{r}^{\mathcal{T}} \cdot \mathbf{b} + \lfloor q/2 \rfloor & \text{if the bit is 1.} \end{cases}$

► Decryption of pair c⁷, d: compute

$$\mathbf{d} - \mathbf{c}^{\mathsf{T}} \cdot \mathbf{s} = \mathbf{d} - \mathbf{r}^{\mathsf{T}} \cdot \mathbf{A} \cdot \mathbf{s} = \mathbf{d} - \mathbf{r}^{\mathsf{T}} \mathbf{b} - \mathbf{r}^{\mathsf{T}} \mathbf{e} \approx \begin{cases} 0 & \text{if bit was 0,} \\ \lfloor q/2 \rfloor & \text{if bit was 1.} \end{cases}$$
small enough

- Features:
 - Hardness reduction from classical lattice problems
 - Linear operations
 - simple and efficient implementation
 - highly parallelizable
 - Source of exciting applications
 - FHE, attribute-based encryption for arbitrary access policies, general-purpose code obfuscation

- Features:
 - Hardness reduction from classical lattice problems
 - Linear operations
 - simple and efficient implementation
 - highly parallelizable
 - Source of exciting applications
 - FHE, attribute-based encryption for arbitrary access policies, general-purpose code obfuscation
- Drawback: key size.
 - To hide the secret one needs an entire linear system:

Identify vector space

 \mathbb{F}_q^n with $\mathcal{R}_q = \mathbb{Z}[x]/(q, f(x))$ for some irreducible monic $f(x) \in \mathbb{Z}[x]$ s.t. deg f = n, by viewing

 (s_1, s_2, \ldots, s_n) as $s_1 + s_2 x + \cdots + s_n x^{n-1}$.

Identify vector space

 \mathbb{F}_q^n with $\mathcal{R}_q = \mathbb{Z}[x]/(q, f(x))$ for some irreducible monic $f(x) \in \mathbb{Z}[x]$ s.t. deg f = n, by viewing

 (s_1, s_2, \ldots, s_n) as $s_1 + s_2 x + \cdots + s_n x^{n-1}$.

Use samples of the form

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

with A_a the matrix of multiplication by some random $\mathbf{a}(x) = a_1 + a_2 x + \dots + a_n x^{n-1}$.

Identify vector space

 \mathbb{F}_q^n with $\mathcal{R}_q = \mathbb{Z}[x]/(q, f(x))$ for some irreducible monic $f(x) \in \mathbb{Z}[x]$ s.t. deg f = n, by viewing

 (s_1, s_2, \ldots, s_n) as $s_1 + s_2 x + \cdots + s_n x^{n-1}$.

Use samples of the form

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

with $A_{\mathbf{a}}$ the matrix of multiplication by some random $\mathbf{a}(x) = a_1 + a_2 x + \dots + a_n x^{n-1}$.

Store a(x) rather than A_a: saves factor n.

Example:

• if $f(x) = x^n + 1$, then A_a is the anti-circulant matrix

(a ₁	$-a_n$		$-a_3$	$-a_2$	
a_2	<i>a</i> 1		$-a_4$	$-a_3$	
a_3	a_2		$-a_5$	$-a_4$	
:	÷	·	÷	÷	
a_n	<i>a</i> _{n-1}		a_2	a ₁	

of which it suffices to store the first column.

Direct ring-based analogue of LWE-sample would read

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

with the e_i sampled independently from

$$\mathcal{N}(\mathbf{0},\sigma)$$

for some fixed small $\sigma = \sigma(n)$.

Direct ring-based analogue of LWE-sample would read

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

with the e_i sampled independently from

$$\mathcal{N}(\mathbf{0}, \sigma)$$

for some fixed small $\sigma = \sigma(n)$.

This is not Ring-LWE!

Direct ring-based analogue of LWE-sample would read

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

with the e_i sampled independently from

$$\mathcal{N}(\mathbf{0},\sigma)$$

for some fixed small $\sigma = \sigma(n)$.

This is not Ring-LWE!

Not backed up by hardness statement.

Direct ring-based analogue of LWE-sample would read

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

with the e_i sampled independently from

$$\mathcal{N}(\mathbf{0},\sigma)$$

for some fixed small $\sigma = \sigma(n)$.

This is not Ring-LWE!

- Not backed up by hardness statement.
- Sometimes called Poly-LWE.

So what is Ring-LWE according to [LPR10]? Samples look like

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \qquad \qquad \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

So what is Ring-LWE according to [LPR10]? Samples look like

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + A_{f'(x)} \cdot B^{-1} \cdot \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

where

- ► *B* is the canonical embedding matrix.
- A_{f'(x)} compensates for the fact that one actually picks secrets from the dual.

So what is Ring-LWE according to [LPR10]? Samples look like

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + A_{f'(x)} \cdot B^{-1} \cdot \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

where

- ► *B* is the canonical embedding matrix.
- A_{f'(x)} compensates for the fact that one actually picks secrets from the dual.

Hardness reduction from ideal lattice problems.

Note:

• factor $A_{f'(x)} \cdot B^{-1}$ might skew the error distribution,

Note:

• factor $A_{f'(x)} \cdot B^{-1}$ might skew the error distribution,

but also scales it!

• det
$$A_{f'(x)} = \Delta$$
 with

 $\Delta = |\operatorname{disc} f(x)|, \quad \leftarrow \operatorname{could} \operatorname{be} \operatorname{huge}$

• det $B^{-1} = 1/\sqrt{\Delta}$.

Note:

• factor $A_{f'(x)} \cdot B^{-1}$ might skew the error distribution,

but also scales it!

• det $A_{f'(x)} = \Delta$ with

 $\Delta = |\operatorname{disc} f(x)|, \quad \leftarrow \operatorname{could} \operatorname{be} \operatorname{huge}$

• det $B^{-1} = 1/\sqrt{\Delta}$.

So "on average", each e_i is scaled up by $\sqrt{\Delta}^{1/n} \dots$

... but remember: skewness.

Scaled Canonical Gaussian ring-based LWE

 $A_{f'(x)}$ is changed to a scalar λ

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \lambda \cdot B^{-1} \cdot \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

.

The natural choice is $\lambda = |\Delta|^{1/n}$.

• So det
$$A_{\lambda} = |\Delta|$$
.

Scaled Canonical Gaussian ring-based LWE

 $A_{f'(x)}$ is changed to a scalar λ

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \frac{\lambda \cdot B^{-1}}{b_1 \cdot \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}}$$

The natural choice is $\lambda = |\Delta|^{1/n}$.

• So det $A_{\lambda} = |\Delta|$.

SCG-LWE = Ring-LWE for 2^m -cyclotomic fields:

•
$$f'(x) = 2^{m-1}x^{2^{m-1}-1}$$
,
• $\lambda = 2^{m-1}$,

► So $A_{f'(x)} = M \cdot A_{\lambda}$ for some matrix $M \in GL_n(\mathbb{Z})$.

For SCG ring-based LWE with parameters:

- $n = 2^{\ell}$ for some $\ell \in \mathbb{N}$,
- a modulus q = poly(n),
- an error distribution with $\sigma = poly(n)$,
- an underlying field $K = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_\ell})$,
 - ▶ a square-free $m = \prod p_i \ge (2\sigma \sqrt{n \log n})^{2/\varepsilon}$ for some $\varepsilon > 0$,

•
$$\forall i : p_i \equiv 1 \mod 4$$
, so $\Delta_K = m^{n/2}$,

• a scaling parameter $\lambda' = \lambda/|\Delta_K|^{\varepsilon/n}$

For SCG ring-based LWE with parameters:

- $n = 2^{\ell}$ for some $\ell \in \mathbb{N}$,
- a modulus q = poly(n),
- an error distribution with $\sigma = poly(n)$,
- an underlying field $K = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_\ell})$,
 - ▶ a square-free $m = \prod p_i \ge (2\sigma \sqrt{n \log n})^{2/\varepsilon}$ for some $\varepsilon > 0$,

•
$$\forall i : p_i \equiv 1 \mod 4$$
, so $\Delta_K = m^{n/2}$,

• a scaling parameter $\lambda' = \lambda/|\Delta_K|^{\varepsilon/n}$

there exist an attack with

Time: $poly(n \cdot log(q))$ **Space:** O(n) samples

For SCG ring-based LWE with parameters:

- $n = 2^{\ell}$ for some $\ell \in \mathbb{N}$,
- a modulus q = poly(n),
- an error distribution with $\sigma = poly(n)$,
- an underlying field $K = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_\ell})$,
 - ▶ a square-free $m = \prod p_i \ge (2\sigma \sqrt{n \log n})^{2/\varepsilon}$ for some $\varepsilon > 0$,

•
$$\forall i : p_i \equiv 1 \mod 4$$
, so $\Delta_K = m^{n/2}$,

• a scaling parameter $\lambda' = \lambda/|\Delta_K|^{\varepsilon/n}$

there exist an attack with

Time: $poly(n \cdot log(q))$ **Space:** O(n) samples

 $\lambda' = \lambda/|\Delta_K|^{1/2n}$ appears in ELOS'15, CLS'15, CLS'16.

Tensor structure:

$$\blacktriangleright K = K_1 \otimes_{\mathbb{Q}} K_2 \otimes_{\mathbb{Q}} \cdots \otimes_{\mathbb{Q}} K_\ell,$$

• where $K_i = \mathbb{Q}(\sqrt{p_i})$

• The ring of integers $R = R_1 \otimes_{\mathbb{Z}} R_2 \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} R_\ell$,

• where
$$R_i = \mathbb{Z}[(1 + \sqrt{p_i})/2]$$

• The dual
$$R^{\vee} = \frac{1}{\sqrt{m}}R = R_1^{\vee} \otimes_{\mathbb{Z}} R_2^{\vee} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} R_{\ell}^{\vee}$$

Tensor structure:

$$\blacktriangleright K = K_1 \otimes_{\mathbb{Q}} K_2 \otimes_{\mathbb{Q}} \cdots \otimes_{\mathbb{Q}} K_\ell,$$

• where $K_i = \mathbb{Q}(\sqrt{p_i})$

• The ring of integers $R = R_1 \otimes_{\mathbb{Z}} R_2 \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} R_\ell$,

• where
$$R_i = \mathbb{Z}[(1 + \sqrt{p_i})/2]$$

• The dual
$$R^{\vee} = \frac{1}{\sqrt{m}}R = R_1^{\vee} \otimes_{\mathbb{Z}} R_2^{\vee} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} R_\ell^{\vee}$$

So $\lambda \cdot B^{-1}$ is a Kronecker product of corresponding matrices in underlying quadratic fields K_i

$$egin{pmatrix} rac{-1+\sqrt{p_i}}{2} & rac{1+\sqrt{p_i}}{2} \\ 1 & -1 \end{pmatrix}$$

Note

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{-1+\sqrt{p_i}}{2} & \frac{1+\sqrt{p_i}}{2} \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \end{pmatrix}$$

and through the Kronecker product

$$\begin{pmatrix} 0 & 0 & \dots & 1 \end{pmatrix} \cdot \boldsymbol{\lambda} \cdot \boldsymbol{B}^{-1} = \mathbf{d} \in \{1, -1\}^n$$

Note

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{-1+\sqrt{p_i}}{2} & \frac{1+\sqrt{p_i}}{2} \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \end{pmatrix}$$

and through the Kronecker product

$$(0 \ 0 \ \dots \ 1) \cdot \lambda \cdot B^{-1} = \mathbf{d} \in \{1, -1\}^n$$

Applying to an error term of

$$\mathbf{b} = A_{\mathbf{a}} \cdot \mathbf{s} + \mathbf{\lambda'} \cdot \mathbf{B}^{-1} \cdot \mathbf{e}$$

we have

$$|\Delta_{\mathcal{K}}|^{-\varepsilon/n} \cdot \mathbf{d} \cdot \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix}^T = \omega.$$

 ω is distributed by Gaussian with the standard deviation

$$\frac{\sqrt{n} \cdot \sigma}{|\Delta_{\mathcal{K}}|^{\varepsilon/n}} = \frac{\sqrt{n} \cdot \sigma}{\sqrt{m}^{\varepsilon}} \le \frac{1}{2\sqrt{\log n}}$$

Asymptotically $P(|\omega| < \frac{1}{2}) \rightarrow 1$ as $n \rightarrow \infty$.

 ω is distributed by Gaussian with the standard deviation

$$\frac{\sqrt{n} \cdot \sigma}{|\Delta_{\mathcal{K}}|^{\varepsilon/n}} = \frac{\sqrt{n} \cdot \sigma}{\sqrt{m}^{\varepsilon}} \le \frac{1}{2\sqrt{\log n}}$$

Asymptotically $P(|\omega| < \frac{1}{2}) \rightarrow 1$ as $n \rightarrow \infty$. So a SCG-LWE sample

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \lambda' \cdot B^{-1} \cdot \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

 ω is distributed by Gaussian with the standard deviation

$$\frac{\sqrt{n} \cdot \sigma}{|\Delta_{\mathcal{K}}|^{\varepsilon/n}} = \frac{\sqrt{n} \cdot \sigma}{\sqrt{m}^{\varepsilon}} \le \frac{1}{2\sqrt{\log n}}$$

Asymptotically $P(|\omega| < \frac{1}{2}) \rightarrow 1$ as $n \rightarrow \infty$. So a SCG-LWE sample results in

$$b_n = \langle \text{the last row of } A_a, s \rangle + \omega$$

 $\boldsymbol{\omega}$ is distributed by Gaussian with the standard deviation

$$\frac{\sqrt{n} \cdot \sigma}{|\Delta_{\mathcal{K}}|^{\varepsilon/n}} = \frac{\sqrt{n} \cdot \sigma}{\sqrt{m}^{\varepsilon}} \le \frac{1}{2\sqrt{\log n}}$$

Asymptotically $P(|\omega| < \frac{1}{2}) \rightarrow 1$ as $n \rightarrow \infty$. So a SCG-LWE sample results in

$$b_n = \langle \text{the last row of } A_a, s \rangle + \omega$$

 $\lfloor b_n \rceil = \langle \text{the last row of } A_a, s \rangle$

 ω is distributed by Gaussian with the standard deviation

$$\frac{\sqrt{n} \cdot \sigma}{|\Delta_{\mathcal{K}}|^{\varepsilon/n}} = \frac{\sqrt{n} \cdot \sigma}{\sqrt{m}^{\varepsilon}} \le \frac{1}{2\sqrt{\log n}}.$$

Asymptotically $P(|\omega| < \frac{1}{2}) \rightarrow 1$ as $n \rightarrow \infty$. So a SCG-LWE sample results in

$$b_n = \langle \text{the last row of } A_a, s \rangle + \omega$$

 $\lfloor b_n \rceil = \langle \text{the last row of } A_a, s \rangle$

n exact equations reveal the secret vector **s**.

 ω is distributed by Gaussian with the standard deviation

$$\frac{\sqrt{n} \cdot \sigma}{|\Delta_{\mathcal{K}}|^{\varepsilon/n}} = \frac{\sqrt{n} \cdot \sigma}{\sqrt{m}^{\varepsilon}} \le \frac{1}{2\sqrt{\log n}}$$

Asymptotically $P(|\omega| < \frac{1}{2}) \rightarrow 1$ as $n \rightarrow \infty$. So a SCG-LWE sample results in

$$b_n = \langle \text{the last row of } A_a, s \rangle + \omega$$

 $\lfloor b_n \rceil = \langle \text{the last row of } A_a, s \rangle$

n exact equations reveal the secret vector **s**.

The attack works for the corresponding Ring-LWE problem with

$$\sigma' = \frac{\sigma}{|\Delta|^{\varepsilon/n}}.$$

$$\sigma' = rac{\sigma}{|\Delta|^{arepsilon/n}} \leq rac{1}{2\sqrt{n\log n}}.$$

$$\sigma' = \frac{\sigma}{|\Delta|^{\varepsilon/n}} \le \frac{1}{2\sqrt{n\log n}}$$

- SCG-LWE can simplify Ring-LWE.
 - Keep a scalar λ instead of $A_{f'(x)}$.

$$\sigma' = \frac{\sigma}{|\Delta|^{\varepsilon/n}} \le \frac{1}{2\sqrt{n\log n}}$$

- SCG-LWE can simplify Ring-LWE.
 - Keep a scalar λ instead of $A_{f'(x)}$.
- Inaccurate choice of a scalar leads to attacks.
 - ELOS'15, CLS'15, CLS'16,
 - unified overview in Peikert'16.

$$\sigma' = \frac{\sigma}{|\Delta|^{\varepsilon/n}} \le \frac{1}{2\sqrt{n\log n}}$$

- SCG-LWE can simplify Ring-LWE.
 - Keep a scalar λ instead of $A_{f'(x)}$.
- Inaccurate choice of a scalar leads to attacks.
 - ► ELOS'15, CLS'15, CLS'16,
 - unified overview in Peikert'16.
- Hardness proof for proper scalars?

No threat to the security proof of Ring-LWE. The standard deviation is far less than needed.

$$\sigma' = \frac{\sigma}{|\Delta|^{\varepsilon/n}} \le \frac{1}{2\sqrt{n\log n}}$$

- SCG-LWE can simplify Ring-LWE.
 - Keep a scalar λ instead of $A_{f'(x)}$.
- Inaccurate choice of a scalar leads to attacks.
 - ► ELOS'15, CLS'15, CLS'16,
 - unified overview in Peikert'16.
- Hardness proof for proper scalars?

Thank you for your attention!