KU LEUVEN

Extension Field Cancellation

A New MQ Trapdoor Construction

February 2016 Alan Szepieniec¹, Jintai Ding², Bart Preneel¹ 1: KU Leuven, ESAT/COSIC first.secondname@esat.kuleuven.be 2: University of Cincinnati, jintai.ding@uc.edu

Outline

- Introduction
- Extension Field Cancellation
 - Basic Trapdoor
 - Frobenius Tail
- Attacks and Defenses
 - Bilinear Attack
 - Algebraic Attack Minus
 - Differential Symmetry Projection
- Security & Efficiency
 - Security Estimation
 - Implementation Results
- Conclusion

Multivariate Quadratic Cryptosystems

- public key: $\mathcal{P} \in (\mathbb{F}_q[x_1, \dots, x_n])^m$
- public operation: evaluate in $\mathbf{x} \in \mathbb{F}_q^n$
- secret key: (S, T, \mathcal{F}) where $S \in GL_n(\mathbb{F}_q), T \in GL_m(\mathbb{F}_q), \mathcal{F} \in (\mathbb{F}_q[x_1, \dots, x_n])^m$ such that $\mathcal{P} = T \circ \mathcal{F} \circ S$
- private operation: invert S, \mathcal{F}, T all easy!

Single-Field Schemes

- all arithmetic occurs in \mathbb{F}_q
- canonical example: UOV

•
$$\mathcal{F}_i(\mathbf{o}, \mathbf{v}) = \begin{pmatrix} \mathbf{o}^\mathsf{T} & \mathbf{v}^\mathsf{T} \end{pmatrix} \mathfrak{F}_i \begin{pmatrix} \mathbf{o} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} \mathbf{o}^\mathsf{T} & \mathbf{v}^\mathsf{T} \end{pmatrix} \begin{pmatrix} \mathbf{o} \\ \mathbf{v} \end{pmatrix}$$

- invert $\mathcal{F}(\mathbf{o}, \mathbf{v}) = \mathbf{y}$:
 - fix \mathbf{v} at random
 - solve $\mathcal{F}(\mathbf{o}, \mathbf{v}) = \mathbf{y}$ for \mathbf{o}
 - linear system!

Mixed-Field Schemes

<□> < @ > < E > < E > E のQ 5/24

- arithmetic occurs in \mathbb{F}_q as well as in $\mathbb{F}_{q^n} \cong \mathbb{F}_q[z]/\langle p(z) \rangle$
- canonical example: HFE
- let $\varphi(\mathbf{x}) : \mathbb{F}_q^n \to \mathbb{F}_{q^n} : \mathbf{x} \mapsto \mathcal{X} = x_0 + x_1 z + \dots x_{n-1} z^{n-1}$
- let $f(\mathcal{X}) = \sum_{i < d} \sum_{j < d} \alpha_{i,j} \mathcal{X}^{q^i + q^j} + \sum_{k < d} \beta_k \mathcal{X}^{q^k} + \gamma$
- $\mathcal{F}(\mathbf{x}) = \varphi^{-1} \circ f \circ \varphi(\mathbf{x})$
- or for simplicity: $\mathcal{F}(\mathcal{X}) = f(\mathcal{X})$
- invert $\mathcal{F}(\mathcal{X}) = \mathcal{Y}$:
 - factorize the polynomial $\mathcal{F}(\mathcal{X}) \mathcal{Y}$
 - choose a root \mathcal{X}_r such that $\mathcal{F}(\mathcal{X}_r) \mathcal{Y} = 0$

MQ Encryption Schemes

- ZHFE
 - mixed-field
 - 2 high-degree polynomials *F*(*X*) and *F*(*X*) linked to 1 low-degree polynomial Ψ(*X*)
 - inversion: factorize $\Psi(\mathcal{X})$
- ABC / Simple Matrix Encryption
 - single-field, but embeds matrix algebra
 - reduces inversion to linear system solving
- Extension Field Cancellation (EFC)
 - mixed-field
 - 2 high-degree polynomials
 - reduces inversion to linear system solving

!! All three are expanding maps $\mathbb{F}_q^n \to \mathbb{F}_q^{2n}$!!

EFC: Basic Trapdoor

< □ > < @ > < E > < E > E の < で 7/24

- let $\varphi_m : \mathbb{F}_q^n \to \mathbb{F}_q^{n \times n}$ map a vector $\mathbf{x} \in \mathbb{F}_q^n$ to the matrix representation of $\mathcal{X} \in \mathbb{F}_{q^n}$.
- let $A, B \in \mathbb{F}_q^{n \times n}$ be matrices and $\alpha(\mathcal{X}) = \varphi(A\mathbf{x}), \quad \beta(\mathcal{X}) = \varphi(B\mathbf{x})$
- Central map:

$$\mathcal{F} = \begin{pmatrix} \varphi_m(A\mathbf{x})\mathbf{x} \\ \varphi_m(B\mathbf{x})\mathbf{x} \end{pmatrix} = \begin{pmatrix} \alpha(\mathcal{X})\mathcal{X} \\ \beta(\mathcal{X})\mathcal{X} \end{pmatrix}$$

EFC: Basic Trapdoor

Central map:

$$\mathcal{F} = \begin{pmatrix} \varphi_m(A\mathbf{x})\mathbf{x} \\ \varphi_m(B\mathbf{x})\mathbf{x} \end{pmatrix} = \begin{pmatrix} \alpha(\mathcal{X})\mathcal{X} \\ \beta(\mathcal{X})\mathcal{X} \end{pmatrix}$$

How to invert?

$$\mathcal{F}(\mathcal{X}) = \begin{pmatrix} \alpha(\mathcal{X})\mathcal{X} \\ \beta(\mathcal{X})\mathcal{X} \end{pmatrix} = \begin{pmatrix} \mathcal{D}_1 \\ \mathcal{D}_2 \end{pmatrix}$$

Solution:

$$\beta(\mathcal{X})\mathcal{D}_1 - \alpha(\mathcal{X})\mathcal{D}_2 = 0$$

i.e., solve for \mathbf{x} :

$$\varphi_m(B\mathbf{x})\mathbf{d}_1 - \varphi_m(A\mathbf{x})\mathbf{d}_2 = 0$$

which is a *linear* system.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Enhanced Trapdoor

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ の Q @ 9/24

- key idea: use Frobenius isomorphism
- disadvantage: restricted to characteristic 2 only

$$\mathcal{E}(\mathcal{X}) = \begin{pmatrix} \alpha(\mathcal{X})\mathcal{X} + \beta(\mathcal{X})^3 \\ \beta(\mathcal{X})\mathcal{X} + \alpha(\mathcal{X})^3 \end{pmatrix}$$

Enhanced Trapdoor: Inversion

How to invert?

$$\mathcal{E}(\mathcal{X}) = \begin{pmatrix} \alpha(\mathcal{X})\mathcal{X} + \beta(\mathcal{X})^3 \\ \beta(\mathcal{X})\mathcal{X} + \alpha(\mathcal{X})^3 \end{pmatrix} = \begin{pmatrix} \mathcal{D}_1 \\ \mathcal{D}_2 \end{pmatrix}$$

Solution: solve for \mathcal{X} :

$$\alpha(\mathcal{X})\mathcal{D}_2 - \beta(\mathcal{X})\mathcal{D}_1 = \alpha(\mathcal{X})^4 - \beta(\mathcal{X})^4$$

or for \mathbf{x} :

$$\alpha_m(\mathbf{x})\mathbf{d}_2 - \beta_m(\mathbf{x})\mathbf{d}_1 = Q_2(A\mathbf{x} - B\mathbf{x})$$

where $Q_2 \in \mathbb{F}_q^{n \times n}$ is the matrix associated with the Frobenius transform $\mathcal{X} \mapsto \mathcal{X}^4$.

Bilinear Attack

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- basic variant: $\mathcal{F}(\mathcal{X}) = \begin{pmatrix} \alpha(\mathcal{X})\mathcal{X} \\ \beta(\mathcal{X})\mathcal{X} \end{pmatrix} = \begin{pmatrix} \mathcal{Y}_1 \\ \mathcal{Y}_2 \end{pmatrix}$
- bilinear relation: $\beta(\mathcal{X})\mathcal{Y}_1 = \alpha(\mathcal{X})\mathcal{Y}_2$
- there exists coefficients $K_i, L_i \in \mathbb{F}_{q^n}$ such that $\sum_{i=0}^{n-1} \mathcal{X}^{q^i}(K_i \mathcal{Y}_1 + L_i \mathcal{Y}_2) = 0$
- attack:
 - generate many tuples $(\mathcal{X}, \mathcal{Y}_1, \mathcal{Y}_2)$
 - compute K_i and L_i using linear algebra
 - given a ciphertext $\mathcal{Y} = (\mathcal{Y}_1, \mathcal{Y}_2)$ and given the coefficients K_i, L_i , computing \mathcal{X} is easy

Other Attacks and Defenses

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 12/24

- same basic idea
- protect against Bilinear Attack: minus
- protect against Algebraic Attack: more minus
- protect against Differential Symmetry Attack: projection
- $\mathsf{EFC}_p^-\text{, }\mathsf{EFC}_{pt^2}^-$

Algebraic Attack

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 13/24

- Algebraic Attack: decent Gröbner bases algorithms (*e.g.* F₄, F₅, MutantXL)
- Running time depends on degree of regularity
- D_{reg} depends on rank of quadratic form

$$\mathcal{F}(\mathcal{X}) = \begin{pmatrix} \mathcal{X}^{\mathsf{T}} \mathfrak{F}_1 \mathcal{X} \\ \mathcal{X}^{\mathsf{T}} \mathfrak{F}_2 \mathcal{X} \end{pmatrix} \quad \text{where e.g.} \quad \mathcal{X}^{\mathsf{T}} = (\mathcal{X}, \mathcal{X}^q, \mathcal{X}^{q^2} \dots \mathcal{X}^{q^{n-1}})$$

Rank of Extension Field Quadratic Form $\mathcal{F} \circ S \sim$ $\mathcal{F}_1 = \alpha(\mathcal{X})\mathcal{X} \sim$ rank = 2rank = 2(change of basis) $T \circ \mathcal{F} \circ S \sim$ full rank $T(\mathcal{X}) = \sum t_i \mathcal{X}^{q^i}$ $T \circ \mathcal{F}(\mathcal{X}) = \sum t_i \left(\mathcal{X}^{\mathsf{T}} \mathfrak{F} \mathcal{X} \right)^{q^i}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fast Gröbner Basis

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ? 15/24

• F_4 implicitly recovers T

Minus

- solution: drop a rows from T
- F_4 can only recover n-a rows of T

- rank r = 2 + a
- drawback: guess a values during decryption

Effect of Minus

Decryption Errors

n

◆□ → ◆□ → ◆ = → ● = - つへで 18/24

Differential Symmetry Attack

- $D\mathcal{F}(\mathbf{x},\mathbf{y}) = \mathcal{F}(\mathbf{x}+\mathbf{y}) \mathcal{F}(\mathbf{x}) \mathcal{F}(\mathbf{y}) + \mathcal{F}(\mathbf{0})$
- symmetry $\Leftrightarrow \exists \Lambda, L \ . \ D\mathcal{F}(L\mathbf{x}, \mathbf{y}) + D\mathcal{F}(\mathbf{x}, L\mathbf{y}) = \Lambda D\mathcal{F}(\mathbf{x}, \mathbf{y})$
- broke SFLASH
- solution (pSFLASH): S must be singular and n prime
- EFC_p :
 - $\operatorname{rank}(A) = \operatorname{rank}(B) = n 1$
 - *n* is prime
 - and $\ker(A)\cap \ker(B)=\{\mathbf{0}\}$

Estimating Security

- algebraic attack: Gaussian elimination in matrix with $T = \binom{n}{D_{\rm reg}}$ monomials
- $\tau = \binom{n}{2}$ nonzero terms per row

• complexity of Wiedemann algorithm: $O(\tau T^2)$

$$D_{\mathsf{reg}} \leq \frac{(q-1)(r+a)}{2} + 2$$

Decryption Time as a Function of *a*

(日) (四) (日) (日) 2 21/24

Algebraic Attack Time

• implementation in Magma (has F₄)

time

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ○ 22/24

Implementation Results

construction	sec. key	pub. key	ctxt.
EFC _p ⁻ , $q = 2, n = 83, a = 10$			
$EFC_{pt^2}^-, q = 2, n = 83, a = 8$	48.3 KB	523 KB	20 B
$EFC_{p}^{-}, q = 3, n = 59, a = 6$	48.8 KB	375 KB	28 B

construction	key gen.	enc.	dec.
EFC _p , $q = 2, n = 83, a = 10$	2.45 s	0.004 s	9.074 s
$EFC_{pt^2}^-, q = 2, n = 83, a = 8$	3.982 s	0.004 s	2.481 s
$EFC_{p}^{-}, q = 3, n = 59, a = 6$	2.938 s	0.004 s	12.359 s

Conclusion

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

- extension field cancellation (EFC)
 - MQ mixed field trapdoor construction
 - generate a pair of high-degree quadratic polynomials
 - uses commutativity of extension field to cancel the polynomials' complexity
 - end up with a linear system
- modifiers
 - Frobenius Tail in char 2 (speed)
 - Minus (protects against Algebraic Attack)
 - Projection (destroys Differential Symmetry)
- future work
 - get rid of Minus modifier
 - better security argument
 - shrink public keys
 - hardware implementation