Extension Field Cancellation
A New MQ Trapdoor Construction

February 2016
Alan Szepieniec1, Jintai Ding2, Bart Preneel1
1: KU Leuven, ESAT/COSIC
 first.secondname@esat.kuleuven.be
2: University of Cincinnati, jintai.ding@uc.edu
Outline

• Introduction
• Extension Field Cancellation
 • Basic Trapdoor
 • Frobenius Tail
• Attacks and Defenses
 • Bilinear Attack
 • Algebraic Attack – Minus
 • Differential Symmetry – Projection
• Security & Efficiency
 • Security Estimation
 • Implementation Results
• Conclusion
Multivariate Quadratic Cryptosystems

- public key: $\mathcal{P} \in (\mathbb{F}_q[x_1, \ldots, x_n])^m$
- public operation: evaluate in $x \in \mathbb{F}_q^m$
- secret key: (S, T, \mathcal{F}) where $S \in \text{GL}_n(\mathbb{F}_q), T \in \text{GL}_m(\mathbb{F}_q), \mathcal{F} \in (\mathbb{F}_q[x_1, \ldots, x_n])^m$ such that $\mathcal{P} = T \circ \mathcal{F} \circ S$
- private operation: invert S, \mathcal{F}, T — all easy!

```
encryption or signature verification

\[ \mathcal{P} \]

public knowledge
private knowledge

decryption or signature generation
```
Single-Field Schemes

- all arithmetic occurs in \mathbb{F}_q
- canonical example: UOV

$$\mathcal{F}_i(o, v) = (o^T \ v^T) \bar{\mathcal{F}}_i \begin{pmatrix} o \\ v \end{pmatrix} = (o^T \ v^T) \begin{pmatrix} 1 & \ldots & 1 \\ 1 & \ldots & 1 \end{pmatrix} \begin{pmatrix} o \\ v \end{pmatrix}$$

- invert $\mathcal{F}(o, v) = y$:
 - fix v at random
 - solve $\mathcal{F}(o, v) = y$ for o
 - linear system!
Mixed-Field Schemes

• arithmetic occurs in \mathbb{F}_q as well as in $\mathbb{F}_{q^n} \cong \mathbb{F}_q[z]/\langle p(z) \rangle$
• canonical example: HFE
• let $\varphi(x) : \mathbb{F}_q^n \rightarrow \mathbb{F}_{q^n} : x \mapsto x = x_0 + x_1 z + \ldots x_{n-1} z^{n-1}$
• let $f(x) = \sum_{i<d} \sum_{j<d} \alpha_{i,j} x^{q^i+q^j} + \sum_{k<d} \beta_k x^{q^k} + \gamma$
• $F(x) = \varphi^{-1} \circ f \circ \varphi(x)$
• or for simplicity: $F(x) = f(x)$
• invert $F(x) = y$:
 • factorize the polynomial $F(x) - y$
 • choose a root x_r such that $F(x_r) - y = 0$
MQ Encryption Schemes

- ZHFE
 - mixed-field
 - 2 high-degree polynomials $F(X)$ and $\hat{F}(X)$ linked to 1 low-degree polynomial $\Psi(X)$
 - inversion: factorize $\Psi(X)$

- ABC / Simple Matrix Encryption
 - single-field, but embeds matrix algebra
 - reduces inversion to linear system solving

- Extension Field Cancellation (EFC)
 - mixed-field
 - 2 high-degree polynomials
 - reduces inversion to linear system solving

!! All three are expanding maps $\mathbb{F}_q^n \rightarrow \mathbb{F}_q^{2n}$!!
EFC: Basic Trapdoor

• let $\varphi_m : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^{n \times n}$ map a vector $x \in \mathbb{F}_q^n$ to the matrix representation of $X \in \mathbb{F}_q^n$.

• let $A, B \in \mathbb{F}_q^{n \times n}$ be matrices and $\alpha(X) = \varphi(Ax), \beta(X) = \varphi(Bx)$

• Central map:

$$F = \begin{pmatrix} \varphi_m(Ax)x \\ \varphi_m(Bx)x \end{pmatrix} = \begin{pmatrix} \alpha(X)X \\ \beta(X)X \end{pmatrix}$$
EFC: Basic Trapdoor

Central map:

\[
\mathcal{F} = \begin{pmatrix} \varphi_m(Ax)x \\ \varphi_m(Bx)x \end{pmatrix} = \begin{pmatrix} \alpha(x)x \\ \beta(x)x \end{pmatrix}
\]

How to invert?

\[
\mathcal{F}(x) = \begin{pmatrix} \alpha(x)x \\ \beta(x)x \end{pmatrix} = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix}
\]

Solution:

\[
\beta(x)D_1 - \alpha(x)D_2 = 0
\]

i.e., solve for \(x \):

\[
\varphi_m(Bx)d_1 - \varphi_m(Ax)d_2 = 0
\]

which is a \textit{linear} system.
Enhanced Trapdoor

- key idea: use Frobenius isomorphism
- disadvantage: restricted to characteristic 2 only

\[\mathcal{E}(\mathcal{X}) = \begin{pmatrix} \alpha(\mathcal{X})\mathcal{X} + \beta(\mathcal{X})^3 \\ \beta(\mathcal{X})\mathcal{X} + \alpha(\mathcal{X})^3 \end{pmatrix} \]
Enhanced Trapdoor: Inversion

How to invert?

$$\mathcal{E}(\mathcal{X}) = \begin{pmatrix} \alpha(\mathcal{X}) \mathcal{X} + \beta(\mathcal{X})^3 \\ \beta(\mathcal{X}) \mathcal{X} + \alpha(\mathcal{X})^3 \end{pmatrix} = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix}$$

Solution: solve for \mathcal{X}:

$$\alpha(\mathcal{X}) D_2 - \beta(\mathcal{X}) D_1 = \alpha(\mathcal{X})^4 - \beta(\mathcal{X})^4$$

or for x:

$$\alpha_m(x) d_2 - \beta_m(x) d_1 = Q_2(Ax - Bx)$$

where $Q_2 \in \mathbb{F}_q^{n \times n}$ is the matrix associated with the Frobenius transform $\mathcal{X} \mapsto \mathcal{X}^4$.
Bilinear Attack

- basic variant: \(\mathcal{F}(\mathcal{X}) = \begin{pmatrix} \alpha(\mathcal{X}) \mathcal{X} \\ \beta(\mathcal{X}) \mathcal{X} \end{pmatrix} = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \)

- bilinear relation: \(\beta(\mathcal{X}) Y_1 = \alpha(\mathcal{X}) Y_2 \)

- there exists coefficients \(K_i, L_i \in \mathbb{F}_{q^n} \) such that
 \[
 \sum_{i=0}^{n-1} \mathcal{X}^{q^i} (K_i Y_1 + L_i Y_2) = 0
 \]

- attack:
 - generate many tuples \((\mathcal{X}, Y_1, Y_2)\)
 - compute \(K_i\) and \(L_i\) using linear algebra
 - given a ciphertext \(\mathcal{Y} = (Y_1, Y_2) \) and given the coefficients \(K_i, L_i\), computing \(\mathcal{X}\) is easy
Other Attacks and Defenses

• same basic idea
• protect against Bilinear Attack: minus
• protect against Algebraic Attack: more minus
• protect against Differential Symmetry Attack: projection
• $EFC_p^-, EFC_{pt^2}^-$
Algebraic Attack

- Algebraic Attack: decent Gröbner bases algorithms (e.g. F_4, F_5, MutantXL)
- Running time depends on degree of regularity
- \(D_{\text{reg}} \) depends on rank of quadratic form

\[
\mathcal{F}(\mathcal{X}) = \begin{pmatrix} \mathcal{X}^T \mathcal{F}_1 \mathcal{X} \\ \mathcal{X}^T \mathcal{F}_2 \mathcal{X} \end{pmatrix} \quad \text{where e.g.} \quad \mathcal{X}^T = (\mathcal{X}, \mathcal{X}^q, \mathcal{X}^{q^2} \ldots \mathcal{X}^{q^{n-1}})
Rank of Extension Field Quadratic Form

\[F_1 = \alpha(X)X \sim \text{rank } = 2 \]

\[F \circ S \sim \text{rank } = 2 \quad \text{(change of basis)} \]

\[T \circ F \circ S \sim \text{full rank} \]

\[
T(X) = \sum t_i X^{q^i}
\]

\[
T \circ F(X) = \sum t_i (X^T \Phi X)^{q^i}
\]
• F_4 implicitly recovers T
• solution: drop a rows from T

• F_4 can only recover $n - a$ rows of T

• rank $r = 2 + a$

• drawback: guess a values during decryption
Effect of Minus

- fixed $n = 35$
Decryption Errors

The graph shows the relationship between the error rate and the parameter n, for different values of a. The error rate decreases as n increases, indicating a lower probability of decryption errors for larger values of n. Each curve represents a different value of a, with $a = 0$, $a = 2$, $a = 4$, $a = 6$, $a = 8$, and $a = 10$, $a = 12$.
Differential Symmetry Attack

\[DF(x, y) = F(x + y) - F(x) - F(y) + F(0) \]

symmetry \(\Leftrightarrow \exists \Lambda, L . DF(Lx, y) + DF(x, Ly) = \Lambda DF(x, y) \)

broke SFLASH

solution (pSFLASH): \(S \) must be singular and \(n \) prime

EFC\(_p\):
 - \(\text{rank}(A) = \text{rank}(B) = n - 1 \)
 - \(n \) is prime
 - and \(\ker(A) \cap \ker(B) = \{0\} \)
Estimating Security

• algebraic attack: Gaussian elimination in matrix with $T = \binom{n}{D_{\text{reg}}}$ monomials
• $\tau = \binom{n}{2}$ nonzero terms per row
• complexity of Wiedemann algorithm: $O(\tau T^2)$

$$D_{\text{reg}} \leq \frac{(q - 1)(r + a)}{2} + 2$$

<table>
<thead>
<tr>
<th>n</th>
<th>q</th>
<th>t^2</th>
<th>a</th>
<th>D_{reg}</th>
<th>security</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>82</td>
</tr>
<tr>
<td>83</td>
<td>2</td>
<td>✔</td>
<td>8</td>
<td>8</td>
<td>82</td>
</tr>
<tr>
<td>59</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>82</td>
</tr>
</tbody>
</table>
Decryption Time as a Function of a
Algebraic Attack Time

- implementation in Magma (has F_4)
Implementation Results

<table>
<thead>
<tr>
<th>construction</th>
<th>sec. key</th>
<th>pub. key</th>
<th>ctxt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{EFC}^{-}_{p}, q = 2, n = 83, a = 10$</td>
<td>48.3 KB</td>
<td>509 KB</td>
<td>20 B</td>
</tr>
<tr>
<td>$\text{EFC}^{-}_{pt2}, q = 2, n = 83, a = 8$</td>
<td>48.3 KB</td>
<td>523 KB</td>
<td>20 B</td>
</tr>
<tr>
<td>$\text{EFC}^{-}_{p}, q = 3, n = 59, a = 6$</td>
<td>48.8 KB</td>
<td>375 KB</td>
<td>28 B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>construction</th>
<th>key gen.</th>
<th>enc.</th>
<th>dec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{EFC}^{-}_{p}, q = 2, n = 83, a = 10$</td>
<td>2.45 s</td>
<td>0.004 s</td>
<td>9.074 s</td>
</tr>
<tr>
<td>$\text{EFC}^{-}_{pt2}, q = 2, n = 83, a = 8$</td>
<td>3.982 s</td>
<td>0.004 s</td>
<td>2.481 s</td>
</tr>
<tr>
<td>$\text{EFC}^{-}_{p}, q = 3, n = 59, a = 6$</td>
<td>2.938 s</td>
<td>0.004 s</td>
<td>12.359 s</td>
</tr>
</tbody>
</table>
Conclusion

- extension field cancellation (EFC)
 - MQ mixed field trapdoor construction
 - generate a pair of high-degree quadratic polynomials
 - uses commutativity of extension field to cancel the polynomials’ complexity
 - end up with a linear system
- modifiers
 - Frobenius Tail in char 2 (speed)
 - Minus (protects against Algebraic Attack)
 - Projection (destroys Differential Symmetry)
- future work
 - get rid of Minus modifier
 - better security argument
 - shrink public keys
 - hardware implementation