
IND-CCA Secure Hybrid Encryption from
QC-MDPC Niederreiter

Ingo von Maurich1, Lukas Heberle1 and Tim Güneysu2

1Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany
2University of Bremen & DFKI, Germany

{ingo.vonmaurich, lukas.heberle}@rub.de, tim.gueneysu@uni-bremen.de

Abstract. QC-MDPC McEliece attracted significant attention as promis-
ing alternative public-key encryption scheme believed to be resistant
against quantum computing attacks. Compared to binary Goppa codes,
it achieves practical key sizes and was shown to perform well on con-
strained platforms such as embedded microcontrollers and FPGAs.
However, so far none of the published QC-MDPC McEliece/Niederreiter
implementations provide indistinguishability under chosen plaintext or
chosen ciphertext attacks. Common ways for the McEliece and Nieder-
reiter encryption schemes to achieve IND-CPA/IND-CCA security are
surrounding constructions that convert them into secured schemes. In
this work we take a slightly different approach presenting (1) an efficient
implementation of QC-MDPC Niederreiter for ARM Cortex-M4 micro-
controllers and (2) the first implementation of Persichetti’s IND-CCA hy-
brid encryption scheme from PQCrypto’13 instantiated with QC-MDPC
Niederreiter for key encapsulation and AES-CBC/AES-CMAC for data
encapsulation. Both implementations achieve practical performance for
embedded microcontrollers, at 80-bit security hybrid encryption takes
16.5 ms, decryption 111 ms and key-generation 386.4 ms.

Keywords: Post-quantum cryptography, code-based public key encryp-
tion, hybrid encryption, software, microcontroller

1 Introduction

Shor’s quantum algorithm [21] efficiently solves the underlying problem
of RSA (factoring) and can be adapted to break ECC and DH (discrete
logarithms). Although quantum computers can handle only few qubits
so far, the proof-of-concept of Shor’s algorithm was verified several times
with 143 being the largest number which was factored into its prime fac-
tors, yet [23]. In this context the NSA Central Security Service recently
announced preliminary plans to transition its Suite B family of cryp-
tographic algorithms to quantum-resistant algorithms in the ”not too
distant future”1.
1 See NSA announcement published at https://www.nsa.gov/ia/programs/suiteb_
cryptography/.

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/

The code-based public-key encryption schemes by McEliece [15] and
Niederreiter [17] are among the most promising alternatives to RSA and
ECC. Their security is based on variants of hard problems in coding
theory. McEliece encryption instantiated with quasi-cyclic moderate den-
sity parity-check (QC-MDPC) codes [7] was introduced in [16], followed
by QC-MDPC Niederreiter encryption in [3]. Compared to the original
proposal of using McEliece and Niederreiter with binary Goppa codes,
QC-MDPC codes allow much smaller keys and were shown to achieve
good performance on a variety of platforms [9,12,13,14] combined with
improved decoding and implementation techniques.

However, none of the previous implementations took into account that
the plain McEliece and Niederreiter cryptosystems do not provide indis-
tinguishability under adaptive chosen-ciphertext attacks (IND-CCA), us-
ing QC-MDPC codes does not change this fact. McEliece/Niederreiter can
be integrated into existing frameworks which provide IND-CPA or IND-
CCA security (e.g.,[11,18]). Another approach is to plug Niederreiter into
an IND-CCA secure hybrid encryption scheme as recently proposed by
Persichetti [20]. It is the first hybrid encryption scheme with assump-
tions from coding theory and it was proven to provide IND-CCA security
and indistinguishability of keys under adaptive chosen-ciphertext attacks
(IK-CCA) in the random oracle model in [20]. Being a hybrid encryp-
tion scheme, it furthermore allows efficient encryption of large plaintexts
without requiring to share a symmetric secret key beforehand. Still it is
not clear how efficient such a system is in practice, especially when im-
plemented for constrained processors of embedded devices.

Contribution. In this work we provide the first implementation of QC-
MDPC Niederreiter for ARM Cortex-M4 microcontrollers for which we
also deploy Persichetti’s recent hybrid encryption scheme. We base Per-
sichetti’s hybrid encryption scheme on QC-MDPC Niederreiter and ex-
tend it to handle arbitrary plaintext lengths.

Outline. We summarize the background on QC-MDPC Niederreiter in
Sect. 2. Hybrid encryption with Niederreiter based on [20] is presented in
Sect. 3. Our implementation of QC-MDPC Niederreiter for ARM Cortex-
M4 microcontrollers is detailed in Sect. 4 followed by our implementation
of Persichetti’s hybrid encryption scheme in Sect. 5. Results and compar-
isons are given in Sect. 6. We conclude in Sect. 7.

2 QC-MDPC Codes in a Nutshell

In the following we introduce (QC-)MDPC codes, show how the code-
based public-key cryptosystem Niederreiter is instantiated with these
codes, and explain efficient decoding of (QC-)MDPC codes.

2.1 (QC-)MDPC Codes

A binary linear [n, k] error-correcting code C of length n is a subspace
of Fn2 of dimension k and co-dimension r = n − k. Code C is defined
by generator matrix G ∈ Fk×n2 such that C = {mG ∈ Fn2 |m ∈ Fk2}.
Alternatively, the code is defined by parity-check matrix H ∈ Fr×n2 such
that C = {c ∈ Fn2 |HcT = 0r}. The syndrome of any vector x ∈ Fn2 is
s = HxT ∈ Fr2. By definition, s = 0 for all codewords of C.

A code C is called quasi-cyclic (QC) if there exists an integer n0 such
that cyclic shifts of codewords c ∈ C by n0 positions yield codewords
c′ ∈ C of the same code. If n = n0 · p for some integer p, the generator
and parity-check matrices are composed of p× p circulant blocks. Hence,
storing one row of each circulant block fully describes the matrices.

A (n, r, w)-MDPC code is a binary linear [n, k] error-correcting code
whose parity-check matrix has constant row weight w. A (n, r, w)-QC-
MDPC code is a (n, r, w)-MDPC code which is quasi-cyclic with n = n0r.

2.2 The QC-MDPC Niederreiter Cryptosystem

Using QC-MDPC codes in code-based cryptography was proposed in [16]
for the McEliece cryptosystem, a corresponding description of QC-MDPC
Niederreiter was published in [3]. We introduce the Niederreiter cryp-
tosystem’s key-generation, encryption and decryption based on t-error
correcting (n, r, w)-QC-MDPC codes.

QC-MDPC Niederreiter Key-Generation Key-generation requires
to generate a (n, r, w)-QC-MDPC code C with n = n0r. The private key is
a composed parity-check matrix of the form H = [H0 | . . . |Hn0−1] which
exposes a decoding trapdoor. The public key is a systematic parity-check
matrix H ′ = [H−1n0−1 ·H] = [H−1n0−1 ·H0 | . . . |H−1n0−1 ·Hn0−2 | I] which hides
the trapdoor but allows to compute syndromes of the public code.

In order to generate a (n, r, w)-QC-MDPC code with n = n0r, se-
lect the first rows h0, . . . , hn0−1 of the n0 parity-check matrix blocks
H0, . . . ,Hn0−1 with Hamming weight

∑n0−1
i=0 wt(hi) = w at random and

check that Hn0−1 is invertible (which is only possible if the row weight
dv is odd). The parity-check matrix blocks H0, . . . ,Hn0−1 are generated
by r − 1 quasi-cyclic shifts of the first rows h0, . . . , hn0−1. Their concate-
nation yields the private parity-check matrix H. The public systematic
parity-check matrix H ′ is computed by multiplication of H−1n0−1 with all
blocks Hi. Since the public and private parity-check matrices H ′ and H
are quasi-cyclic, it suffices to store their first rows or columns instead
of the full matrices. The identity part I of the public key is usually not
stored.

QC-MDPC Niederreiter Encryption Given a public key H ′ and
a message m ∈ Z/

(
n
t

)
Z, encode m into an error vector e ∈ Fn2 with

wt(e) = t. The ciphertext is the public syndrome s′ = Heᵀ ∈ Fr2.

QC-MDPC Niederreiter Decryption Given a public syndrome s′ ∈
Fr2, recover its error vector using a t-error correcting (QC-)MDPC decoder
ΨH with private key H. If e = ΨH(s′) succeeds, return e and transform it
back to message m. On failure of ΨH(s′) return ⊥.

Parameters The following parameters are proposed in [16] among others
for QC-MDPC McEliece to achieve a 80-bit security level: n0 = 2, n =
9602, r = 4801, w = 90, t = 84. For a 128-bit security level the parameters
are n0 = 2, n = 19714, r = 9857, w = 142, t = 134. The same parameters
achieve the same security levels for QC-MDPC Niederreiter [3].

By dv = w/n0 we denote the Hamming weight of each row of the n0
private parity-check matrix blocks2. With these parameters the private
parity-check matrix H consists of n0 = 2 circulant blocks, each with
constant row weight dv. The public parity-check matrix H ′ consists of
n0 − 1 = 1 circulant block concatenated with the identity matrix. The
public key has a size of r bit and the private key has a size of n bit which
can be compressed since it is sparse (w � n). Plaintexts are encoded
into vectors of length n and Hamming weight t, ciphertexts have length
r. For a detailed discussion of the security of QC-MDPC McEliece and
QC-MDPC Niederreiter we refer to [3,16].

2 80-bit: dv = 45, 128-bit: dv = 71. Note that n0 = 2 and w is even for the parameters
used in this paper.

2.3 Decoding (QC-)MDPC Codes

Compared to encryption, decryption is a more involved operation in both
time and memory. Several decoders were proposed for decoding (QC-
)MDPC codes [2,7,9,10,16]. Bit-flipping decoders as introduced by Gal-
lager in [7] were, with some modifications, found to be most suitable
for constrained devices [9,13,14]. We transfer the decoder and several
optimizations to the QC-MDPC Niederreiter setting and introduce the
decoder in its basic form in Algorithm 1 in the Appendix.

The decoder receives a private parity-check matrix H and a public
syndrome s′ as input and computes the private syndrome s = Hn0−1s

′ᵀ.
Decoding then runs in several iterations which in general works as follows:
the inner loop iterates over all columns of a block of the private-parity
check matrix and counts the number of unsatisfied parity-checks #upc

by counting the number of shared set bits of each column Hi[j] and the
private syndrome s. If #upc exceeds a certain threshold3, the decoder
likely has found an error position and inverts the corresponding bit in
a zero-initialized error candidate ecand ∈ Fn2 , thus the name bit-flipping
decoder. In addition, we include the optimization of directly updating the
syndrome s by addition of Hi[j] in case of a bit-flip as proposed in [9]. It
was shown in [9,14] that this modification improves the decoding behavior
to take less decoding iterations and to reduce the chance of decoding
failures. Furthermore, decoding is accelerated because recomputing the
syndrome after every decoding iteration is avoided.

The inner loop is repeated for every block Hi of H until all blocks have
been processed. Afterwards the public syndrome of the error candidate is
computed and compared to the initial public syndrome s′. On a match,
the correct error vector was found and is returned. Otherwise the decoder
continues with the next iteration. After a fixed maximum of iterations,
decoding is restarted with incremented thresholds as proposed in [14] for
QC-MDPC McEliece. The failure symbol ⊥ is returned if even after δmax
threshold adaptations the correct error vector is not found.

3 Hybrid Encryption with Niederreiter

Hybrid encryption schemes were introduced in [5]. They are divided into
two independent components: (1) a key encapsulation mechanism (KEM)
and (2) a data encapsulation mechanism (DEM). The KEM is a public-
key encryption scheme that encrypts a randomly generated symmetric

3 The bit-flipping thresholds used in Algorithm 1 are precomputed from the code
parameters as proposed in [7].

session key under the public key of the intended receiver. The DEM then
encrypts the plaintext under the randomly generated session key using a
symmetric encryption scheme.

Hybrid encryption is usually beneficial in practice because symmetric
encryption is orders of magnitude more efficient than pure asymmetric
encryption, especially for large plaintexts. On the other hand sole usage
of symmetric schemes is not practical due to the symmetric key distri-
bution problem. Hybrid encryption takes the best of two worlds, efficient
symmetric data encryption combined with asymmetric key distribution.

3.1 Constructing Hybrid Encryption from Niederreiter

We introduce the Niederreiter hybrid encryption scheme as proposed
in [20]. The authors focus on the realization of an IND-CCA secure KEM
and assume an IND-CCA symmetric encryption scheme as DEM.

The Niederreiter KEM Let F be the family of t-error correcting [n, k]-
linear codes over Fq and let n, k, q, t be fixed system parameters. The
Niederreiter KEM πNR KEM = (GenNR KEM,EncNR KEM,DecNR KEM) fol-
lows the definition of a generic Niederreiter scheme.

– GenNR KEM Pick a random code C ∈ F with parity-check matrix
H ′ = (M | In−k). Output H ′ (or M) as public-key and the private
code description ∆ as private key.

– EncNR KEM Given a public-key H ′, generate a random error e ∈R Fnq
of weight wt(e) = t and compute its public syndrome s′ = H ′eT . The
symmetric key k of length lk is generated from e by a key-derivation
function (KDF) as k = (k1 || k2) = KDF(e, lk). The output is (k, s′).

– DecNR KEM Decode ciphertext s′ to e = Ψ∆(s′) using the private
code description ∆ and decoding algorithm Ψ . Derive symmetric key
k = KDF(e, lk) if decoding succeeds. Otherwise, k is set to a pseudo-
random string of length lk, [20] suggests to set k = KDF(s′, lk).

The Standard DEM Let EncSEk1 (·) and DecSEk1 (·) denote en-/decryption
operations of a symmetric encryption scheme under key k1 and let Evk2(·)
denote the evaluation of a keyed message authentication code (MAC)
under key k2 that returns a fixed length message authentication tag τ .

The standard DEM πDEM = (EncDEM,DecDEM) is the combination of a
symmetric encryption scheme with a message authentication code4.

– EncDEM Given a plaintext m and key k = (k1 || k2), encrypt m to T =
EncSEk1 (m) and compute the message authentication tag τ = Evk2(T)
of ciphertext T under k2. The output is c∗ = (T || τ).

– DecDEM Given a ciphertext c∗ and key k, split c∗ into T, τ and k
into k1, k2. Then verify the correctness of the MAC by evaluating

Evk2(T)
?
= τ . If the MAC is correct, plaintext m = DecSEk1 (T) is de-

crypted and returned. In case of a MAC mismatch, ⊥ is returned.

The Niederreiter Hybrid Encryption Scheme The Niederreiter hy-
brid encryption scheme πHY = (GenHY,EncHY,DecHY) is a combination
of the Niederreiter KEM πNR KEM with the DEM πDEM.

– GenHY invokes GenNR KEM() and returns the generated key-pair.

– EncHY is given plaintext m and public key H ′ and first invokes
EncNR KEM(H ′). The returned symmetric keys k1 and k2 are used
to encrypt the message to T = EncSEk1 (m) and to compute the authen-
tication tag τ = Evk2(T). The overall ciphertext is (s′ ||T || τ).

– DecHY receives ciphertext (s′ ||T || τ) and invokes DecNR KEM(s′) to
decrypt the symmetric key k = (k1 || k2). Then it verifies the correct-

ness of the MAC by evaluating Evk2(T)
?
= τ . If the MAC is correct,

plaintext m = DecSEk1 (T) is decrypted and returned. In case of a MAC
mismatch, ⊥ is returned.

3.2 QC-MDPC Niederreiter Hybrid Encryption

Our instantiation of the Niederreiter hybrid encryption scheme of [20] re-
alizes the KEM using QC-MDPC Niederreiter as defined in Sect. 2.2.
We construct the DEM based on AES so that it is capable of han-
dling arbitrary plaintext lengths compared to the impractical one-time
pad DEM used in [20]. We target 80-bit and 128-bit security levels in
this work. Hence, our DEM uses AES-128 in CBC-mode for message en-
/decryption and AES-128 in CMAC-mode for MAC computation follow-
ing the encrypt-then-MAC paradigm. Furthermore, we employ SHA-256
for key derivation of (k1 || k2) from s′.

4 In [20], the DEM is simply assumed to be a fixed length one-time pad of the size of m
combined with a standardized MAC. Hence, EncSEk1 (m) = m ⊕ k1 and DecSEk1 (T) =
T ⊕ k1 with m,T, k1 having the same fixed length.

For an overall 256-bit security level, appropriate parameters for QC-
MDPC Niederreiter should be used (cf. [16]) combined with AES-256-
CBC, AES-256-CMAC, and SHA-512.

Hybrid Key-Generation is simply using QC-MDPC Niederreiter key-
generation (cf. Sect. 2.2).

Hybrid Encryption generates a random error vector e ∈R Fn2 with
Hamming weight t, encrypts e using QC-MDPC Niederreiter encryption
to s′ and derives two 128-bit symmetric sessions keys k = (k1 || k2) =
SHA-256(e). Message m is encrypted under k1 by AES-128 in CBC-mode
to T starting from a random initialization vector IV . A MAC tag τ
is computed over T under k2 using AES-128 CMAC. The ciphertext is
(s′ ||T || τ || IV).

Hybrid Decryption extracts the symmetric session keys k1, k2 from
the QC-MDPC Niederreiter cryptogram, verifies the provided AES-128
CMAC under k2 and finally decrypts the symmetric ciphertext using k1
with AES-128 in CBC-mode. The scheme is illustrated in Figure 1.

Security Proof for the IND-CCA security of the hybrid scheme is given
in [20] assuming IND-CCA secure symmetric encryption. Furthermore, it
was shown in [5] that it is possible to construct IND-CCA symmetric en-
cryption from IND-CPA symmetric encryption (AES-CBC with random
IVs [1]) by combining it with a standard MAC (AES-CMAC).

4 QC-MDPC Niederreiter on ARM Cortex-M4

The implementation of QC-MDPC Niederreiter presented in the following
targets ARM Cortex-M4 microcontrollers as they are a common modern
representative of embedded computing platforms. Our implementation
covers key-generation, encryption, and decryption. Details on the imple-
mentations of the hybrid encryption scheme based on QC-MDPC Nieder-
reiter are presented in Sect. 5.

To allow fair comparison with previous work we focus on the same
microcontroller that was used to implement QC-MDPC McEliece in [13].
The STM32F417VG microcontroller [22] features an ARM Cortex-M4
CPU with a maximum clock frequency of 168 MHz, 1 MB of flash mem-
ory and 192 kB of SRAM. The microcontroller is based on a 32-bit ar-
chitecture and features built-in co-processors for hardware acceleration of

Alice Bob

e ∈R Fn2
s′ = H′Bobe

ᵀ s′ if Dec∆(s′) :

k = (k1 || k2) = SHA-256(e) k = (k1 || k2) = SHA-256(e)

else:

k = (k1 || k2) = SHA-256(s′)

T = AES-128-CBCenc,k1 (IV,m)

τ = AES-128-CMACk2 (T)

c∗ = (T || τ || IV) c∗ (T || τ || IV) = c∗

if AES-128-CMACk2 (T) = τ :

m = AES-128-CBCdec,k1 (IV, T)

return m

else:

return ⊥

Fig. 1: Alice encrypts plaintext m for Bob using QC-MDPC Niederreiter
hybrid encryption with public key H ′Bob. Note that we split the transfer
of s′ and c∗ into two steps for illustrative purposes.

AES, Triple DES, MD5, SHA-1 as well as true random number genera-
tion (TRNG). Our implementations are written in Ansi-C with additional
use of Thumb-2 assembly for critical functions. The primary optimization
goal is performance, the secondary goal is memory consumption, e.g., we
make limited use of unrolling only where it has high performance impacts.

4.1 Polynomial Representation

Our implementations use three different ways for polynomial represen-
tation. Each representation has advantages which we exploit in different
parts of our implementation.

– poly t : is the näıve way to store a polynomial. It simply stores each bit
of the polynomial after each other, its size depends on the polynomial’s
length and is independent of the polynomial’s weight.

– sparse t : stores the positions of set bits of the polynomial. This repre-
sentation needs less memory than poly t if few bits are set in a poly-
nomial. Furthermore, the sparse t representation allows fast iteration
of set bits in the polynomial without having to test all positions.

– sparse double t : stores the polynomial similarly to the sparse t repre-
sentation but allocates twice the size of the actually required memory.
The yet unused memory is prepended. In addition, it holds a pointer
indicating the start of the polynomial. This representation is benefi-
cial when rotating sparse polynomials compared to rotation in sparse t

representation. Its benefits will be explained in more detail when we
talk about efficient decoding in Sect. 4.4.

4.2 QC-MDPC Niederreiter Key-Generation

Generating a random first row candidate hn0−1 for block Hn0−1 of length
r and Hamming weight dv is done using the microcontroller’s TRNG as
source of entropy. Its outputs are used as indexes at which we set bits
in the polynomial. Since r is prime and hence not a power of two, we
use rejection sampling to ensure a uniform distribution of the sampled
indexes. The TRNG provides 32 random bits per call but only dlog2(r)e
random bits (13 bit at 80-bit security level, 14 bit at 128-bit security level)
are needed to determine an index in the range of 0 ≤ i ≤ r− 1. Hence we
derive two random indexes per TRNG call.

As already stated in Sect. 2.2, we have to ensure that Hn0−1 is in-
vertible. We therefor apply the extended Euclidean algorithm to newly
generated first row candidates until an invertible hn0−1 is found.

We generate the remaining first rows hi, similar to hn0−1 but skip
the inverse checking as only Hn0−1 has to be invertible. After private
key generation, we compute the corresponding public key which is the
systematic parity-check matrix H ′ = H−1n0−1 ·H = [H−1n0−1 ·H0| . . . |I], so

all we need to do is to compute H−11 ·H0 and append the identity matrix
since n0 = 2 in our selected parameter sets. As the private key has few
set bits (dv � r) we store it in sparse representation. The public key is
stored in polynomial representation due to its high density. Since the code
is quasi-cyclic, we only need to store the first columns of both matrices.
The different representations ease and accelerate later usage.

4.3 QC-MDPC Niederreiter Encryption

Given a public key H ′ and an error vector5 e ∈ Fn2 of weight wt(e) = t, we
compute the public syndrome s′ = H ′eᵀ. Computing s′ is done by iterat-
ing over set bits in the error vector and accumulating the corresponding
columns of H ′. Since the error vector is stored in sparse representation,
the index of each bit in the error vector specifies the number of cyclic
shifts of the first column of public key H ′. To avoid repeated shifting,
we reuse the previous shifted column and shift it only by the difference

5 We do not implement constant weight encoding since it is not needed in the hybrid
encryption scheme. Encrypting a message m ∈ Z/

(
n
t

)
Z requires to encode it into an

error-vector e ∈ Fn2 of weight wt(e) = t and to reverse the encoding after decryption.

to the next bit index. Multiplication of eᵀ by the identity part of H ′ is
skipped. As the public syndrome has high density, we store it in poly t
representation.

4.4 QC-MDPC Niederreiter Decryption

For decryption we implement two decoder variants, referred to as DecA
and DecB. They differ in their implementation, the decoding behavior of
both remains as explained in Sect. 2.3. We start with DecA and subse-
quently look at the improvements made in DecB to accelerate decryption.
Furthermore, we discuss general implementation optimizations.

DecA starts by computing the private syndrome s = Hn0−1s
′ᵀ from the

public syndrome s′ and the private key H. This is basically the same
operation as encryption, however we use the sparse t representation for
the private key.

Recovery of the error vector e starts from a zero-initialized error can-
didate ecand of length n. For each column of the private parity-check
matrix blocks we observe in how many positions they differ from the pri-
vate syndrome s, i.e., counting unsatisfied parity-checks. We implement
this step by computing the binary AND of the current column of the
private parity-check matrix block with s followed by a Hamming weight
computation of the result. If the Hamming weight exceeds the decoding
threshold biteration, we invert the corresponding bit in ecand. The position
is determined by the current column i and block j with pos = j ∗ r + i.
Additionally, we XOR the current column onto the private syndrome for
a direct update every time a bit is flipped in ecand. Updating the syn-
drome while decoding was shown to drastically increase decoding perfor-
mance in [9,14] for QC-MDPC McEliece, the results similarly apply to
QC-MDPC Niederreiter.

We iterate over the private key column by column from the first block
to the last by taking the first column of each block and performing suc-
cessive cyclic shifts. The sparse t representation allows efficient shifting
as we only have to increment dv indexes to effectively shift the polyno-
mial. However, we have to check for overflows of incremented indexes
which translate to carry transfers in the regular poly t representation. An
overflow results in additional effort, as we have to transfer every value
in memory so that the position of the highest bit is always stored in the
highest counter.

After iterating over all columns of the private key, we compute the
public syndrome of the current error candidate, i.e., we encrypt ecand to

s′cand = H ′eᵀcand, and compare s′cand to the initial public syndrome s′. On
a match, the error vector was found and decryption finishes by returning
e. On a mismatch, we continue with the next decoding iteration. After
a fixed number of iterations6, we abort and restart decoding with the
original private syndrome and decreased decoding thresholds similar to
the optimized decoder for QC-MDPC McEliece presented in [14].

DecB The decoding approach of DecA has two downsides. First, the
public key has to be known during decryption which diverges from stan-
dard crypto APIs. Second, costly encryptions have to be performed after
each decoding iteration to check whether the current error candidate is
the correct error vector. Our decoder DecB solves these drawbacks as
described in the following.

The first optimization is to transform the private key from sparse t
to sparse double t polynomial representation. This structure allows us to
efficiently handle overflows during column rotation. A cyclic shift without
carry is equivalent to the sparse t representation in which we increment
every bit index of the polynomial. If case of a carry, we pop the last value
of the array (with value r), move all array elements by one position, and
insert a new value in the beginning (with value 0). We illustrate this
operation in Figure 2.

rx

x+10

y

y+1

Fig. 2: Carry handling during cyclic rotation in sparse t representation.

Using sparse double t, we avoid direct manipulation of the array in
case of a carry which is the costly part of the sparse t representation.
Instead, we decrement the pointer by one and insert a zero at the first
element. The last element is ignored since the polynomial has known
fixed weight dv and thereby known length. While the previous approach
needs r operations, this approach breaks it down to two operations, in-
dependent of the polynomial’s length. We illustrate the carry handling in
sparse double t representation in Figure 3.

6 We found the number of iterations experimentally and set it to five, in line with
iteration counts reported in [13,14].

x+1

x

0

r

r

y

y+1

Fig. 3: Carry handling during cyclic rotation in sparse double t represen-
tation. The pointer position is indicated by the black arrow.

Our second optimization checks if the Hamming weight of the error
candidate matches the expected Hamming weight wt(e) = t instead of
encrypting ecand after every decoding iteration. If the Hamming weights
do not match, we continue with the next decoding iteration immediately.
Since Hamming weight computation of a vector is a much cheaper opera-
tion than vector matrix multiplication, decryption performance improves.

Our third optimization eliminates the need to encrypt the error can-
didate to determine whether the correct error vector was found. Instead
we test the private syndrome for zero at the end of each decoding itera-
tion. Since the private syndrome is updated every time a bit-flip occurs,
it becomes zero once the correct error vector was recovered.

Other general optimizations include writing hot code of the decryp-
tion routine in Thumb-2 assembly giving us full control of the executed
instructions and allowing us to pay close attention to the instruction ex-
ecution order to avoid pipeline stalls by interleaving instructions which
decreases the number of wasted clock cycles. Furthermore, we store two
16-bit indexes in one 32-bit field of the sparse double t type7. As we indi-
cate the start by a pointer, we do not need to actually shift the values in
memory in case of an overflow. A shift by 16 bit would be expensive on a
32-bit architecture. Furthermore, this allows us to increment two values
with one ADD instruction and we process twice the data with each load
and store instruction. To benefit from the burst mode of the load and
store instructions (LDMIA and STMIA), i.e., loading and storing multiple
words from/to SRAM, we have to ensure that the memory pointers are
32-bit word aligned. This however is not the case every second overflow
since we decrement the sparse double t pointer in 16-bit steps. To deal
with this issue a flag variable is used and, if set, we temporarily decrease
the pointer for alignment.

7 16 bit are sufficient to store the position for both 80-bit and 128-bit security.

5 QC-MDPC Niederreiter Hybrid Encryption on ARM
Cortex-M4

In this section we detail our implementation of the IND-CCA secure QC-
MDPC Niederreiter hybrid encryption scheme for ARM Cortex-M4 mi-
crocontrollers as introduced in Sect. 3.2. We describe hybrid key-generation,
hybrid encryption, as well as hybrid decryption based on our implemen-
tation of QC-MDPC Niederreiter (cf. Sect. 4).

5.1 Hybrid Key-Generation

The hybrid encryption scheme requires an asymmetric key-pair for the
KEM, and two symmetric keys for the DEM. One symmetric key is used
to ensure confidentiality through encryption, the other key is used to en-
sure message authentication. However, only the asymmetric key pair is
permanent, the symmetric keys are randomly generated during encryp-
tion. Thus, the implementation of the hybrid key-generation is equal to
QC-MDPC Niederreiter key-generation (cf. Sect. 4.2).

5.2 Hybrid Encryption

On input of a plaintext m ∈ F∗2 and a QC-MDPC Niederreiter public key
H ′, we generate a random error vector e ∈R Fn2 with wt(e) = t using
the microcontroller’s TRNG and encrypt e under H ′ using QC-MDPC
Niederreiter encryption (cf. Sect. 4.3). Additionally, a hash is derived
from e and is split into two 128-bit keys k = (k1 || k2) = SHA-256(e).

After generation of k1 and k2 the key encapsulation is finished and
we continue with data encapsulation. We generate a random 16-byte IV
using the microcontroller’s TRNG and encrypt message m under k1 to
T = AES-128-CBCenc,k1(IV,m). Ciphertext T is then fed into AES-128-
CMAC, generating a 16-byte tag τ under key k2. Finally, we concatenate
the outputs to x = (s′ ||T || τ || IV).

To accelerate AES operations we make use of the AES crypto co-
processor featured by the STM32F417 microcontroller for encryption and
MAC generation. Unfortunately, the crypto co-processor only offers SHA-
1 acceleration which we refrain from to not lower the overall security level.
Thus we created a software implementation of SHA-256 for hashing.

5.3 Hybrid Decryption

Hybrid decryption receives ciphertext x = (s′ ||T || τ || IV) and decrypts
the public syndrome s′ using QC-MDPC Niederreiter decryption with

the KEM private key to recover the error vector e (cf. Sect. 4.4). After
successful decryption of e, we derive sessions keys k1 and k2 by hashing
the error vector with SHA-256. We compute the AES-128-CMAC tag τ∗

of the symmetric ciphertext T under k2. If τ∗ 6= τ we abort decryption,
otherwise we AES-128-CBC decrypt T under k1 to recover plaintext m.

Again we make use of the microcontroller’s AES crypto co-processor
to accelerate decryption and MAC computation. For SHA-256 we use the
same software implementation as during encryption.

6 Implementation Results

In the following we present our implementation results of QC-MDPC
Niederreiter and of the hybrid encryption scheme from [20] instantiated
with QC-MDPC Niederreiter. Both implementations target ARM Cortex-
M4 embedded microcontrollers. We list code size as well as execution
time, evaluate the impact of our optimizations and compare the results
with previous work. Our code was built with GCC for embedded ARM
(arm-eabi v.4.9.3) at optimization level -O2.

6.1 QC-MDPC Niederreiter Results

In order to measure the performance of QC-MDPC Niederreiter key-
generation, encryption and decryption, we use randomly chosen instances
throughout the measurements. We generate 500 random key-pairs and
measure for each key-pair 500 en-/decryptions of randomly chosen plain-
texts of n-bit length and Hamming weight t, resulting in 250,000 execu-
tions over which we average the execution time. Furthermore, we measure
cyclic shifting in poly t compared to the sparse polynomial representations
to verify our optimizations in more detail. The execution times are listed
for 80-bit security, results for 128-bit security are given in parenthesis.

QC-MDPC Niederreiter key-generation takes 376.1 ms (1495.8 ms),
encryption 15.6 ms (81.7 ms) and decryption 109.6 ms (477.7 ms) with de-
coder DecB on average. With decoder DecA, decryption takes 697.9 ms
(3830.2 ms) on average. Both decoders require 2.35 (3.25) decoding itera-
tions on average until decoding succeeds. As embedded microcontrollers
usually generate few key pairs in their lifespan, key-generation perfor-
mance is usually of less practical relevance.

Generating the full private parity-check matrix from its first column
in the straightforward poly t representation takes 83.4 ms (345.8 ms). Our
sparse t representation accelerates this to 11.6 ms (34.0 ms), even faster

rotations with 7.9 ms (21.2 ms) for the same task are achieved with the
sparse double t representation. By storing private keys in sparse repre-
sentation with two 16-bit counters in one 32-bit word we reduce the re-
quired memory per private key by 85% (88.5%) from 9602 bit (19714 bit)
to 1440 bit (2272 bit) compared to simply storing the polynomials in their
full length.

The code size of 80-bit QC-MDPC Niederreiter including key-generation,
encryption and decryption withDecA requires 14 KiB flash memory (1.3%)
and additional 4 KiB SRAM (2.0%). For the 128-bit parameter set we
need 19 KiB flash memory (1.9%) and 4 KiB SRAM (2.0%). The same im-
plementation with decoder DecB requires 16 KiB flash (1.6%) and 3 KiB
SRAM (1.5%). For 128-bit security we measured 20 KiB flash memory
(2.0%) and 3 KiB SRAM (1.5%) with DecB. In Table 1 the code size of
each function is listed separately. Note that the sum of the separate code
sizes is greater than the combined implementation since we reuse code.

6.2 QC-MDPC Niederreiter Hybrid Encryption Results

The overall execution time of hybrid encryption schemes is dominated by
the asymmetric component for key en-/decapsulation. Hence, we focus on
QC-MDPC decoder DecB for key decapsulation as it operates much faster
compared to DecA. We generate 500 random key pairs and en-/decrypt
500 randomly chosen plaintexts with a length of 32 byte for each key
pair with the hybrid encryption scheme. We measure short plaintexts
to get worst-case performance in terms of cycles/byte, longer plaintexts
only marginally affect performance since they are only processed by the
symmetric components. We list our results for 80-bit security, results for
128-bit security are given in parenthesis.

Key-generation of the hybrid encryption scheme requires 386.4 ms
(1511.8 ms), hybrid encryption takes 16.5 ms (83.2 ms), and hybrid de-
cryption 111.0 ms (477.5 ms) on average. Compared to pure QC-MDPC
Niederreiter, the symmetric operations (en-/decryption, MACing, hash-
ing) only add very little to the overall execution time (< 5%) although
the hybrid encryption scheme seems more complex at first. The AES
computations are hardware accelerated which results in further speedup
but even if a Cortex-M4 microcontroller without an AES co-processor
would be used we would only see a slight increase in the overall execution
time. The required code size of the complete hybrid encryption scheme
(QC-MDPC Niederreiter, AES-128-CBC, AES-128-CMAC, SHA-256) is
25 KiB flash (2.4%) and 4 KiB SRAM (2.0%) at 80-bit security and 30 KiB
flash (2.8%) and 4 KiB SRAM (2.0%) at 128-bit security.

6.3 Comparison with Previous Work

Implementation results reported in other work are listed in Table 1 in
the Appendix. A direct comparison of QC-MDPC McEliece [13] with our
hybrid QC-MDPC Niederreiter implemented on similar ARM Cortex-M4
microcontrollers shows that hybrid QC-MDPC Niederreiter is around 2.5
times faster at the same security level. In addition it provides IND-CCA
security and the possibility to efficiently handle large plaintexts. However,
one has to keep in mind that the QC-MDPC McEliece implementation
of [13] features constant runtime which adds to its execution time.

Compared to QC-MDPC McEliece implemented on an ATxmega256 [9],
our encryption runs 50 times faster and decryption runs 25 times faster,
in addition we provide IND-CCA security through hybrid encryption.
Comparing implementations on ATxmega256 with implementations on
STM32F417 is by no means a fair comparison, however both microcon-
trollers come at a similar price which makes the comparisons relevant for
practical applications.

We refrain from comparing our work to the cyclo-symmetric (CS)
MDPC Niederreiter implementation on a PIC24FJ32GA002 microcon-
troller as presented in [3] because it was shown in [19] that the pro-
posed CS-MDPC parameters do not reach the proclaimed security levels
and need adaptation. McEliece implementations based on binary Goppa
codes targeting the ATxmega256 microcontroller were presented in [6]
and [8]. Again, our implementations outperform both by factors of 5-28.
In addition, binary Goppa code public keys are much larger (64 kByte vs.
4801 bit) up to the point of being impractical for embedded devices with
constraint memory. The CCA2-secure McEliece implementation based on
Srivastava codes presented in [4] also targets the ATxmega256 and is just
4-8 times slower than our hybrid QC-MDPC Niederreiter which seems
to make it a good competitor if it would be implemented on the same
microcontroller as our work.

7 Conclusion

In this work we presented first implementations of QC-MDPC Niederre-
iter and of Persichetti’s IND-CCA secure hybrid encryption scheme for
embedded microcontrollers. We extended the hybrid encryption scheme
to handle arbitrary plaintext lengths by choosing well-known symmet-
ric components for data encapsulation and we achieve reasonable perfor-
mance by combination of new implementation optimizations with trans-
ferred known techniques from QC-MDPC McEliece. Furthermore, our

implementations operate with practical key sizes which for a long time
was one of the major drawbacks of code-based cryptography.

Acknowledgments

This project has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No 645622
(PQCRYPTO). The authors would like to thank Rafael Misoczki for help-
ful feedback and comments when starting this project.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment
of Symmetric Encryption. In 38th Annual Symposium on Foundations of Computer
Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 394–
403. IEEE Computer Society, 1997.

2. E. Berlekamp, R. McEliece, and H. van Tilborg. On the Inherent Intractability of
Certain Coding Problems (Corresp.). Information Theory, IEEE Transactions on,
24(3):384 – 386, may 1978.

3. F. Biasi, P. Barreto, R. Misoczki, and W. Ruggiero. Scaling efficient code-based
cryptosystems for embedded platforms. Journal of Cryptographic Engineering,
pages 1–12, 2014.

4. P. Cayrel, G. Hoffmann, and E. Persichetti. Efficient Implementation of a CCA2-
Secure Variant of McEliece Using Generalized Srivastava Codes. In M. Fischlin,
J. Buchmann, and M. Manulis, editors, Public Key Cryptography - PKC 2012.
Proceedings, volume 7293 of LNCS, pages 138–155. Springer, 2012.

5. R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

6. T. Eisenbarth, T. Güneysu, S. Heyse, and C. Paar. MicroEliece: McEliece for
Embedded Devices. In C. Clavier and K. Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009. Proceedings, volume 5747 of LNCS, pages
49–64. Springer, 2009.

7. R. Gallager. Low-density Parity-check Codes. Information Theory, IRE Transac-
tions on, 8(1):21–28, 1962.

8. S. Heyse. Implementation of McEliece Based on Quasi-dyadic Goppa Codes for
Embedded Devices. In B. Yang, editor, Post-Quantum Cryptography - PQCrypto
2011. Proceedings, volume 7071 of LNCS, pages 143–162. Springer, 2011.

9. S. Heyse, I. v. Maurich, and T. Güneysu. Smaller Keys for Code-Based Cryptogra-
phy: QC-MDPC McEliece Implementations on Embedded Devices. In G. Bertoni
and J.-S. Coron, editors, CHES, volume 8086 of Lecture Notes in Computer Sci-
ence, pages 273–292. Springer, 2013.

10. W. C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes, 2010.
11. K. Kobara and H. Imai. Semantically Secure McEliece Public-Key Cryptosystems-

Conversions for McEliece. In Proceedings of the 4th International Workshop on
Practice and Theory in Public Key Cryptography: Public Key Cryptography, PKC
’01, pages 19–35, London, UK, 2001. Springer-Verlag.

12. I. v. Maurich and T. Güneysu. Lightweight code-based cryptography: QC-MDPC
McEliece encryption on reconfigurable devices. In DATE, pages 1–6. IEEE, 2014.

13. I. v. Maurich and T. Güneysu. Towards Side-Channel Resistant Implementations
of QC-MDPC McEliece Encryption on Constrained Devices. In M. Mosca, editor,
Post-Quantum Cryptography, volume 8772 of Lecture Notes in Computer Science,
pages 266–282. Springer International Publishing, 2014.

14. I. v. Maurich, T. Oder, and T. Güneysu. Implementing QC-MDPC McEliece
Encryption. ACM Transactions on Embedded Computing Systems, 14(3):1–27,
2015.

15. R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116, Jan. 1978.

16. R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto. MDPC-McEliece:
New McEliece variants from Moderate Density Parity-Check codes. In ISIT, pages
2069–2073. IEEE, 2013.

17. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems Control Inform. Theory/Problemy Upravlen. Teor. Inform., 15(2):159–166,
1986.

18. R. Nojima, H. Imai, K. Kobara, and K. Morozov. Semantic security for the
McEliece cryptosystem without random oracles. Des. Codes Cryptography, 49(1-
3):289–305, 2008.

19. R. A. Perlner. Optimizing Information Set Decoding Algorithms to Attack Cy-
closymmetric MDPC Codes. In M. Mosca, editor, Post-Quantum Cryptography
- 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October
1-3, 2014. Proceedings, volume 8772 of Lecture Notes in Computer Science, pages
220–228. Springer, 2014.

20. E. Persichetti. Secure and Anonymous Hybrid Encryption from Coding Theory.
In P. Gaborit, editor, Post-Quantum Cryptography, volume 7932 of Lecture Notes
in Computer Science, pages 174–187. Springer Berlin Heidelberg, 2013.

21. P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms On a Quantum Computer. SIAM J. Comput., 26(5):1484–1509, 1997.

22. STMicroelectronics. STM32F417VG High-performance foundation line, ARM
Cortex-M4 core with DSP and FPU, 1 Mbyte Flash, 168 MHz CPU, ART Ac-
celerator, Ethernet, FSMC, HW crypto - STMicroelectronics. http://www.st.

com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN11/PF252139, 2015.
23. N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du. Quantum Factorization of

143 on a Dipolar-Coupling Nuclear Magnetic Resonance System. Phys. Rev. Lett.,
108:130501, Mar 2012.

http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN11/PF252139
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN11/PF252139

Appendix

Algorithm 1: Syndrome decoder for QC-MDPC codes which re-
turns error vector e or failure ⊥.
1 Input H, s′, iterationsmax, δmax, threshold ;
2 Output e ;
3 Compute the private syndrome s← Hn0−1s

′ᵀ;
4 δ ← 0;
5 ecand ← 0n;
6 while δ < δmax do
7 iterations ← 0;
8 while iterations < iterationsmax do
9 for i in n0 do

10 for j in r do
11 hw ← HammingWeight(Hi[j] & s);
12 if hw ≥ (threshold[iterations] + δ) then
13 ecand[i · r + j]← ecand[i · r + j]⊕ 1;
14 s← Hi[j]⊕ s;
15 end

16 end

17 end
18 s′cand ← H ′eᵀcand;
19 if s′ = s′cand then
20 return ecand;
21 end
22 iterations++;

23 end
24 δ++;
25 s← Hn0−1s

′ᵀ;

26 end
27 return ⊥;

Table 1: Performance and code size of our implementations of QC-MDPC Niederreiter using DecB compared
to other implementations of similar public-key encryption schemes on embedded microcontrollers. We abbre-
viate Niederreiter (NR) and McEliece (McE). As code is reused in the combined implementation its size is

smaller than the sum of the three separate implementations. 1Flash and SRAM memory requirements are
reported for a combined implementation of key generation, encryption, and decryption.

Scheme Platform SRAM Flash Cycles/Op Time/Op
[byte] [byte] [ms]

QC-MDPC NR 80-bit [enc] STM32F417 2,048 3,064 2,623,432 16
QC-MDPC NR 80-bit [dec] STM32F417 2,048 8,621 18,416,012 110
QC-MDPC NR 80-bit [keygen] STM32F417 3,136 8,784 63,185,108 376
QC-MDPC NR 80-bit [combined] STM32F417 3,136 16,124 - -

QC-MDPC NR 128-bit [enc] STM32F417 2,048 4,272 13,725,688 82
QC-MDPC NR 128-bit [dec] STM32F417 2,048 8,962 80,260,696 478
QC-MDPC NR 128-bit [keygen] STM32F417 3,136 12,096 251,288,544 1496
QC-MDPC NR 128-bit [combined] STM32F417 3,136 20,416 - -

QC-MDPC McE 80-bit [enc] [13] STM32F407 2,7001 5,7001 7,018,493 42

QC-MDPC McE 80-bit [dec] [13] STM32F407 2,7001 5,7001 42,129,589 251

QC-MDPC McE 80-bit [keygen] [13] STM32F407 2,7001 5,7001 148,576,008 884

QC-MDPC McE 80-bit [enc] [9] ATxmega256 606 5,500 26,767,463 836
QC-MDPC McE 80-bit [dec] [9] ATxmega256 198 2,200 86,874,388 2,710

Goppa McE [enc] [6] ATxmega256 512 438,000 14,406,080 450
Goppa McE [dec] [6] ATxmega256 12,000 130,400 19,751,094 617

Goppa McE [enc] [8] ATxmega256 3,500 11,000 6,358,400 199
Goppa McE [dec] [8] ATxmega256 8,600 156,000 33,536,000 1,100

Srivastava McE [enc] [4] ATxmega256 - - 4,171,734 130
Srivastava McE [dec] [4] ATxmega256 - - 14,497,587 453

	IND-CCA Secure Hybrid Encryption from QC-MDPC Niederreiter

